
Vulnerability Report
Insecure Features of PDF Documents

J. Müller, D. Noss, C. Mainka, V. Mladenov, J. Schwenk

Abstract

PDF is the de facto standard for document exchange. It is common to open
PDF files from potentially untrusted sources such as email attachments or down-
loaded from the Internet. In this report, analyze the capabilities of malicious
PDF documents. We abuse legitimate features of the PDF standard itself in-
stead of focusing on implementation bugs. Our attacks are categorized into five
classes: (1) Denial-of-Service attacks affecting the host on which the document
is processed. (2) Invasion of privacy attacks which track the document usage.
(3) Information disclosure attacks leaking personal data out of the victim’s com-
puter. (4) Data manipulating on the victim’s system. (5) Code execution on
the victim’s machine. An evaluation of 28 popular PDF processing applications
shows that 26 of them are vulnerable at least one attack. Finally, we propose a
methodology to systematically protect against attacks based on PDF features.

1

Contents

1 Background 3
1.1 Powerful Document Features . 3
1.2 Basic Blocks . 3
1.3 PDF Forms . 4
1.4 Actions & JavaScript . 4

2 Attacker Model 4
2.1 Actions of the Victim . 5
2.2 Attacker’s Capabilities . 5
2.3 Winning Condition . 5

3 Attacks 6
3.1 Denial of Service . 6
3.2 Invasion of Privacy . 7
3.3 Information Disclosure . 9
3.4 Data Manipulation . 11
3.5 Code Execution . 12

4 Evaluation 13
4.1 Denial of Service . 13
4.2 Invasion of Privacy . 15
4.3 Information Disclosure . 17
4.4 Data Manipulation . 18
4.5 Code Execution . 19

5 Exploits 20
5.1 Directory Structure . 20

6 Countermeasures 21
6.1 Towards an Unambiguous Specification 22
6.2 Resource Limitation and Sandboxing 22
6.3 Implementing Privacy by Default . 22
6.4 Removing or Restricting JavaScript 22
6.5 Identification of Dangerous Paths . 23

7 Conclusion 24

References 25

A Appendix 27

2

1 Background

This section briefly introduces the PDF document structure. For reasons of clarity,
we only describe the building blocks relevant for the attacks of this report.

1.1 Powerful Document Features

PDF is arguably the most widely used data format for office document exchange.
Introduced in 1993 by Adobe Systems, the Portable Document Format (PDF) was
designed to provide a consistent representation of documents, independent of the
platform. It supports numerous advanced features, ranging from cryptography to
calculation logic [28], 3D animations [35], JavaScript [2] up to form fields [37]. PDF
document can be updated or annotated without losing previous revisions [38] and
define specific actions [36], for example, to display a certain page once the doc-
ument is opened. On top of this, PDF is enriched with different data formats
which can be embedded into documents, such as XML [4], or Flash [3]. Each of
the formats has its strengths, but allowing their inclusion also enables their weak-
nesses and concerns. In this report we analyze the security of native PDF func-
tions.

1.2 Basic Blocks

A PDF document consists of four basic sections:

1. A header defining the PDF document version (1.1 to 2.0).

2. A body containing the content, a bundle of PDF objects.

3. An index table with references to each object in the body.

4. A trailer defining the root element of the document and a reference to the
index table.

The most important section is the body which contains the objects – the actual
content of the document. An object can, for example, define a headline, a textblock,
or an image.

1obj 10 0
2<< /Length 10 >> % stream length
3stream % start of the stream
4Content % content (e.g., text, image, font, file)
5endstream % end of the stream
6endobj

Listing 1: The PDF object 10 0 includes a 10-byte content stream.

3

Every object is enclosed by the delimiters obj and endobj and has has an identifier. In
Listing 1, the object’s identifier is 10 in generation number 0. Content can be provided
as a string, or – as shown in Listing 1 – as a stream enclosed by stream and endstream.
It can be prefaced with additional information, such as encoding or length. Streams
can optionally be compressed. Many documents use FlatDecode for this purpose,
meaning that the zlib Deflate algorithm is used.

1.3 PDF Forms

With PDF version 1.2, Adobe introduced AcroForms in 1996. Similarly to HTML
forms, AcroForms allow to define input fields, checkboxes and buttons. The user-
input can either be stored directly into the document (using incremental updates)
or be submitted to a dedicated server. In the latter case, AcroForms use the Forms
Data Format (FDF), which is based on raw PDF objects, for transmitting the
data.

1.4 Actions & JavaScript

The PDF specification defines multiple Actions for various purposes. These actions
can be used, for example, to navigate to a certain page in the document (GoTo
action). Actions are commonly combined with form elements (e.g., to play a sound
once a button is clicked, or to show/hide form fields), however, they can also be
triggered automatically based on various events such as opening, printing or closing
the document.

A special action in PDF is the execution of JavaScript. Adobe defined a basic set
of functions [2], but PDF viewer applications often choose to implement a subset of
Adobe’s standard as well as to extent their feature set with proprietary functions.
JavaScript provides a huge flexibility for documents, for example, complex input
validation of forms or changing their values depending on specific conditions (e.g.,
locale).

2 Attacker Model

In this section, we describe the attacker model, including the attacker’s capabilities
and the winning condition.

4

2.1 Actions of the Victim

The victim is an individual who retrieves and opens a malicious PDF document
from an attacker controlled source.

This is a realistic attack scenario, because even sophisticated users download and
open PDF files from untrusted sources such as email attachments or the Internet,
for example, invoices or academic papers are usually shared as PDF files. PDF
documents are generally considered as relatively “safe” compared to other file formats
such as Microsoft Office files, which are known to contain potentially dangerous
macros [17].

To open the PDF document, the victim uses a pre-installed application which pro-
cesses the file in order to display its content. Different applications may process the
file, or interpret features of the PDF standard, differently, thereby enabling or dis-
abling the various attack vectors described in this report.

2.2 Attacker’s Capabilities

The attacker can create a new PDF file or modify an existing document which we
denote as the malicious document. We do not require the malicious document to
be compliant to the PDF specification, although the attacker targets basic func-
tionality and features of the PDF standard. The attacker has full control over the
document structure and its content. While the attacker can easily craft a malicious
document which looks benign once opened and interpreted by the PDF application
(i.e., similar to a document that the victim would expect), this is not assumed to
be necessary, because all attacks are automatically triggered once the file is opened.
The only interaction of the victim is to open the malicious document on the victim’s
computer.

For two privacy-related weaknesses – Evitable metadata and Revision recovery – the
victim is the one creating the document and the goal of the attacker is to obtain
potentially sensitive information from this file, such as revealing metadata or older
revisions of the document.

2.3 Winning Condition

An attack is classified as successful if its winning condition is fulfilled. The winning
condition – the goal of the attacker – is dependent on the attack class and docu-
mented in the corresponding section. For example, in the DoS attack class, the win-
ning condition is reached if the PDF processing application can be forced to consume
all available resources in terms of CPU or memory. In the information disclosure
class of attacks, the winning condition is fulfilled if the attacker manages to obtain
sensitive data, such local files from the victim’s disk.

5

3 Attacks

In this section we summarize well-known attacks and propose new approaches. At
the beginning of each attack category we introduce the goals of the attack and their
applicability.

Methodology

To identify attack vectors, we systematically surveyed which potentially dangerous
features exist in the PDF specification. We created a list of all possible attacks
which can be carried out by abusing these features, and classified them accordingly.
If an attack had previously been discovered, instead of simply being documented as
a “feature” in the standard, we refer to the according literature once introducing the
attack.

To generate our test suite of malicious PDF documents, we chose a semi-automated
approach: we hand-crafted the payloads to test for a certain weakness and wrote
a set of helper tools in Python, in order to generate an exhaustive set of attack
variants as well as a valid PDF structure for each test case. Our efforts resulted in
213 unique PDF files, which we manually opened in 28 PDF applications to observe
the result. This process can be automated by launching each test for each PDF
viewer in a batch and logging the program’s behaviour.

3.1 Denial of Service

The goal of this class of attacks is to craft a document which enforces PDF in-
terpreters to consume all available resources (i.e., computing time or memory) or
causes them to crash. Note that, while the impact of DoS is limited for end-users,
it can lead to severe business impairment if the document is processed on a server,
for example, to generate preview thumbnails of PDF files uploaded to cloud stor-
age.

Infinite loop Inducing an endless loop causes the program execution to get stuck.
The PDF standard allows various elements of the document structure to reference
to themselves, or to other elements of the same type. This can lead to cycles, if
not explicitly handled by the implementation. For example, a Pages object may
reference to other Pages, which is a known problem of the specification, already
discovered in CVE-2007-0104. We systematically studied the PDF standard for
further constructs that allow for reference cycles, recursion, or other kinds of loops,
and found the following novel variants:

6

• Action loop. PDF actions allow to specify a Next action to be performed,
thereby resulting in “action cycles”.

• ObjStm loop. Object streams may extend other object streams which allows
to craft a document with cycles.

• Outline loop. PDF documents may contain an outline. Its entries, however,
can refer to themselves or to each other.

• Calculations. PDF defines “Type 4” calculator functions, for example, to trans-
form colors. Processing hard-to-solve mathematical formulas may lead to high
demands of CPU.

• JavaScript. Finally, in case the PDF application processes scripts within doc-
uments, infinite loops can be induced.

Deflate bomb Data amplification attacks based on malicious zip archives are well
known (see [8, 14, 29]). The first publicly documented DoS attack using a “zip
bomb” was conducted in 1996 against a Fidonet BBS administrator [12]. However,
not only zip files but also stream objects within PDF documents can be compressed
using various algorithms such as Deflate [13] to reduce the overall file size. The idea
that it may theoretically be possible to build a deflation bomb for PDF was recently
noted by [15]. To the best of our knowledge we are the first to actually implement
such “PDF bombs”.

3.2 Invasion of Privacy

In this section, we discuss privacy aspects of PDF. Our first attack, URL invocation,
tracks the usage of a document by silently invoking a connection to the attacker’s
server once the file is opened. The other two attacks, evitable metadata and revision
recovery, deal with the amount of information an attacker can learn from a document
created by the victim.

URL invocation Tracking pixels in HTML emails are well documented1, but the
existence of similar technologies for PDF files is largely unknown to the general
public. However, PDF documents that silently “phone home” should be considered
as privacy-invasive. They can be used, for example, to deanonymize reviewers,
journalists or activists behind a shared mailbox. The goal of this attack is to open
a backchannel to an attacker controlled server once a PDF document is opened by
the victim. Besides learning when the file was opened and by whom (i.e., by which
IP address), the attacker may learn additional information such as the victim’s

1Recently, [31] found backchannels in 40 out of 48 tested email clients.

7

PDF viewer application and operating system, derived from the User-Agent HTTP
header. The possibility of malicious URI resolving in PDF documents has been
introduced by [19] who gave an evaluation for URI and SubmitForm actions in
Acrobat Reader. We extend their analysis to all standard PDF features that allow
to open a URL, such as ImportData, Launch and GoToR as well as JavaScript, and
to a comprehensive set of viewers.

Evitable metadata In 2005, the former US president Bush gave a speech on the
war in Iraq and published a strategy document on the White House website. The
metadata of the PDF document revealed a Duke University political scientist as the
original author of the document [21]. Afterwards, the NSA published best practices
addressing risks involved with hidden data and metadata in PDF files [5]. This ex-
ample shows that there are valid use-cases where the author of a document prefers
to remain anonymous. The issue of unwanted metadata in various file formats is
well known and has been discussed in [7, 30]. Even though metadata is a feature
of the PDF standard, from a privacy perspective creator software should avoid to
include excessive metadata by default and instead let users opt-in. Although many
PDF documents are created with non-PDF software (e.g., LaTeX, office suites, or
system printers), all professional PDF editors offer the creation of PDF files as well.
They are especially used when designing complex PDF documents that, for example,
include forms and JavaScript. During the creation process, these editors generate
special PDF metadata objects, which can contain sensitive information (e.g., user-
names). We are the first to systematically evaluate which metadata is generated by
PDF editors, and we analyze the metadata contained in a representative sample of
PDF documents publicly available on the Internet.

Revision recovery The PDF standard allows editing applications to modify exist-
ing documents while only appending to the file and leaving the original data intact.
Whenever new content is added to the document, it is not simply inserted into
the existing body section. Instead, a new body section is appended at the end of
the PDF file containing new objects.2 This feature is called “incremental updates”.
It enables authors, for example, to undo changes. However, it also enables third
parties to restore previous versions of the document, which may not be desired in
the context of privacy and document security. Especially when sensitive content is
explicitly redacted/blackened in a document to be published, this can be danger-
ous: Instead of deleting the underlying text object, PDF editors may simply overlay
a black rectangle, allowing for easy “unredaction”. Examples of poorly redacted
documents revealing classified information have been published by the Washington
Post [16], the Pentagon [25], Facebook [26], and many others. This is a well-known
problem and has been researched for PDF documents generated by various office

2A new XRef index table and a new trailer must also be appended.

8

suites in [18]. However, modern PDF editors have an explicit “redact” function,
which has not yet been comprehensively evaluated. Therefore we systematically
analyze how document modification and text redaction is implemented in PDF edi-
tors.

3.3 Information Disclosure

The goal of this class of attacks is to leak PDF document form data, local files, or
NTLM credentials to the attacker.

Form data leakage Documents can contain forms to be filled out by the user –
a feature introduced with PDF version 1.2 in 1996 and used on a daily basis for
routine offices tasks such as travel authorization or vacation requests. Depending
on the nature of the form, user input can certainly contain sensitive information
(e.g., financial or medical records). Therefore, the question arises if an attacker can
access and leak such information. The idea of this attack is as follows: The victim
downloads a form – a PDF document which contains form fields – from an attacker
controlled source and fills it out on screen, for example, in order to print it. Note
that there are legitimate cases where a form is obtained from a third party, while
the user input should not be revealed to this party. For example, European SEPA
remittance slips can be downloaded from all over the web3 – even though they have
to be manually signed to be accepted by a local bank. The form is manipulated by
the attacker in such a way that it silently, without the user noticing, sends input
data to the attacker’s server. To the best of our knowledge, we are the first to
implement such an attack, which can be carried out using the PDF SubmitForm
action, or by reading and exfiltrating the form values using standard JavaScript
functions.

Local file leakage The PDF standard defines various methods to embed external
files into a document or otherwise access files on the host’s file system, as documented
below.

• External streams. Documents can contain stream objects (e.g., images) to be
included from external files on disk.

• Reference XObjects. This features allows to a document to import content
from another (external) PDF document.

• Open Prepress Interface. Before printing a document, local files can be defined
as low-resolution placeholders.

3E.g., https://www.ibancalculator.com/fileadmin/EU-Ueberweisung.pdf

9

https://www.ibancalculator.com/fileadmin/EU-Ueberweisung.pdf

• Forms Data Format (FDF). Interactive form data can be stored in and auto-
imported from external FDF files.

• JavaScript functions. The Adobe JavaScript reference enables documents to
read data from or import local files.

If a malicious document managed to 1. read files from the victim’s disk and 2. send
them back to the attacker4 such behaviour would arguably be critical. However,
standard PDF functions can be chained together to achieve exactly this. For exam-
ple, form values can be references to stream objects and every stream, on its part,
can reference to an external file. Moreover, forms can be crafted to auto-submit
themselves using various actions as documented in Figure 1 in section 6. Further-
more, standard JavaScript functions may lead to reading local files and leaking their
contents. We give a systematic overview on this new chaining technique in terms of
a directed graph containing all chains detected during our evaluation, and are the
first to implement these attacks.

Credential theft In 1997, Aaron Spangler posted a vulnerability in Windows NT
on the Bugtraq mailing list [34]: Any client program can trigger a connection to a
rogue SMB server. If the server requests authentication, Windows will automatically
try to log in with a hash of the user’s credentials. Such captured NTLM hashes allow
for efficient offline cracking5 and can be re-used by applying pass-the-hash or relay
attacks [20, 27] to authenticate under the user’s identity. This design flaw in the
Windows operating system is not solved until today6. Back in 1997, Spangler used
a remote image to trick web browsers into making a connection to and thereby
authenticate to the attacker’s host. In April 2018, [33] showed that a similar attacks
can be performed with malicious PDF files. They found that the target of GoToR
and GoToE actions can be set to \\\\attacker.com\\dummyfile7, thereby leaking
credentials in the form of NTLM hashes. The issue was fixed quickly by Adobe and
Foxit. We systematically evaluate this attack for other PDF viewers, and describe
novel variants of this attack, for example, by using various other techniques to access
a network share such as by including it as external content stream or by testing
different PDF actions.

4Note that exfiltration does not necessarily have to occur via the network: For example, if a cloud
storage service generates thumbnail images from uploaded PDF documents, the backchannel
can be the rendered image itself. If a reviewer adds comments to a malicious PDF document,
local files may unintentionally be included when saving, exporting or printing the document.

5For NTLMv2, it is estimated that cracking eight character passwords of any complexity takes
around 2,5 hrs on a modern GPU [11]. Previous versions (NTLMv1, LM) are trivial to crack
and can be considered as broken [24].

6Microsoft introduced the possibility to define “NTLM blocking” in the Windows security policy,
but is has to be actively enabled by administrators. Furthermore, some ISPs block port 445,
however this cannot be relied on.

7Note that the \ character must be escaped in PDF strings, leading to \\.

10

3.4 Data Manipulation

This attack class deals with the capabilities of malicious documents to write to local
files on the host’s file system, to silently modify form data, or to show a different con-
tent based on the application that is used to open the document.

Form modification The idea of this attack is as follows: Similar to “form data
leakage” as described above, the victim obtains a harmlessly looking PDF document
from an attacker controlled source, for example, a remittance slip or a tax form. The
goal of the attacker is to dynamically and without knowledge of the victim change
form field data. Therefore, the document is crafted in such a way that it “modifies
itself”, and manipulates certain form fields immediately before it is printed or saved.
This could be, for example, the recipient of a wire transfer or the declarations
regarding taxable income. Technically, this can be achieved using an ImportData
action which imports form data from an external source or an embedded file, or with
JavaScript included in the document. This technique can be used by an attacker
to either get the victim into trouble (e.g., tax fraud suspicion) or to gain financial
advantages (e.g., by adding herself as recipient of a tax refund). To the best of our
knowledge, this attack has not been implemented before.

File write access As previously described, the PDF standard enables documents to
submit form data to external webservers. However, technically the webserver’s URL
is defined using a PDF File Specification. This ambiguity in the standard may be
interpreted by implementations in such a way that they enable documents to submit
PDF form data to a local file, thereby writing to this file. Furthermore, there are
various JavaScript functions which allow to write to local files on disk. If successful,
this feature can be used to overwrite arbitrary files on the victim’s file system and
thereby purge their content. Furthermore, write access to local files may even be
escalated to code execution if the attacker has write access to certain startup scripts
(e.g., autoexec.bat under Windows, .bashrc under macOS and Linux). JavaScript
based attacks to write to local files have previously been shown, for example, in
CVE-2018-14280 and CVE-2018-14281 for Foxit Reader. We evaluate write access
for a broad range of standard PDF and JavaScript functions. To the best of our
knowledge, we are the first to propose the attack variant based on PDF forms that
automatically submit data to a local file.

Content masking The goal of this attack is to craft a document that renders
differently, depending on the applied PDF interpreter. This can be used, for example,
to show different content to different reviewers, to trick content filters (AI-based
machines as well as human content moderators), plagiarism detection software, or

11

search engines, which index a different text than the one shown to users when
opening the document. Content masking attacks have been shown in the past by
[22, 6] who use polyglots, for example, PDF files that are also a valid JPEG images,
if opened by image processing software. Recently, [23] presented “PDF mirage”,
which applies font encoding to present a different displayed content to humans than
to text exfiltration software. We propose a new approach which targets edge cases
in the PDF specification, leading to different parts of the document actually being
processed by different implementations. To achieve this, we systematically studied
the PDF standard for ambiguities at the syntax and structure level as documented
below.

• Stream confusion. It is unclear how content streams are parsed if their Length
value does not match the offset of the endstream marker, or if syntax errors
are introduced.

• Object confusion. An object can overlay another object. The second object
may not be processed if it has a duplicate object number, if it is not listed in
the XRef table, or if other structural syntax errors are introduced.

• Document confusion. A PDF file can contain yet another document (e.g.,
as embedded file), multiple XRef tables, etc., resulting in ambiguities on the
structural level.

• PDF confusion. Objects before the PDF header or after an EOF marker
may be processed by implementations, introducing ambiguities in the outer
document structure.

There are numerous variants of the four test classes mentioned above, resulting in
an overall of 94 hand-crafted edge cases which we evaluate in section 4. Note that
some of those edge cases have already been discussed in [39, 1, 10] in the context of
what can go wrong when parsing a PDF document.

3.5 Code Execution

The goal of this attack is to execute attacker controlled code. This can be achieved
by silently launching an executable file, embedded within the document, to infect
the host with malware.

Launch action The PDF specification defines the Launch action, which allows
documents to launch arbitrary applications. The file to be launched can either be
specified by a local path, a URL, or a file embedded within the PDF document
itself. The standard does not provide any security considerations regarding this ob-
viously dangerous feature, it even specifies how to pass command line parameters
to the launched application. Therefore, it can be said that PDF offers “command

12

execution by design” – if the standard is straightforwardly implemented. An exam-
ple of a malicious document which contains an embedded executable file (evil.exe)
that is launched once the document is opened (OpenAction) is depicted in List-
ing 2.

1 1 0 obj
2 << /Type /Catalog /Names <<
3 /EmbeddedFiles << /Names [(evil.exe) 2 0 R] >> >>
4 /OpenAction << /S /Launch /F (evil.exe) >>
5 >>
6 endobj
7

8 2 0 obj
9 << /Type /EmbeddedFile /Length 1337 >>

10 stream
11 [executable code]
12 endstream

Listing 2: Example PDF document to launch an embedded executable file.

This danger of Launch actions is well-known (see, e.g., [9], and modern PDF viewers
should warn to user before executing potentially malicious files – or stop supporting
this insecure feature at all. We extend the analysis of [9] to a comprehensive set of
28 modern PDF implementations.

4 Evaluation

To evaluate the attacks introduced in section 3, we tested them on 28 popular PDF
processing applications that were assembled from public software directories for the
major platforms (Windows, Linux, macOS, and Web).8 If a “viewer” and an “editor”
version was available, we tested both. All applications were tested in the default
settings, neither relaxing nor hardening their security policies. Evaluation results
are depicted in Table 1.

4.1 Denial of Service

In the following, we discuss the results for DoS attacks. Because of the large num-
ber of test cases, a fully detailed evaluation is given in Table 3 in the appendix.
We classify an application as vulnerable if it either hangs (usually consuming vast
amounts of CPU or memory), or if the program crashes. A controlled program
termination (i.e., raising an exception before closing) is not considered as a vulner-
ability.

8Note that some PDF applications are available for multiple platforms. In such cases we limited
our tests to the platform with the highest market share.

13

Attack Category DoS Invasion of Privacy Disclosure Manipulation RCE

Application Version In
fin

ite
lo

op

D
efl

at
e

bo
m

b

U
R

L
in

vo
ca

tio
n

Ev
ita

bl
e

m
et

ad
at

a

R
ev

isi
on

re
co

ve
ry

Fo
rm

da
ta

le
ak

ag
e

Lo
ca

lfi
le

le
ak

ag
e

C
re

de
nt

ia
lt

he
ft

Fo
rm

m
od

ifi
ca

tio
n

Fi
le

w
rit

e
ac

ce
ss

C
on

te
nt

m
as

ki
ng

C
od

e
ex

ec
ut

io
n

Acrobat Reader DC (2019.008.20081)

W
in

do
w

s

 – – # # # # # #
Foxit Reader (9.2.0.9297) # – – # # # # # #
PDF-XChange Viewer (2.5.322.9) – – # #
Perfect PDF Reader (8.0.3.5) – – # # # # #
PDF Studio Viewer (2018.1.0) # – – G# # # # #
Nitro Reader (5.5.9.2) – – # # #
Acrobat Pro DC (2017.011.30127) # G# # # # # # #
Foxit PhantomPDF (9.5.0.20723) # # # # # # # #
PDF-XChange Editor (7.0.326.1) # # # #
Perfect PDF Premium (10.0.0.1) # # # # # #
PDF Studio Pro (12.0.7) # # # G# # # # #
Nitro Pro (12.2.0.228) # # # # #
Nuance Power PDF (3.0.0.17) # # # # #
iSkysoft PDF Editor (6.4.2.3521) # # G# # # # # # # #
Master PDF Editor (5.1.36) # # # G# # # #
Soda PDF Desktop (11.0.16.2797) # # # # # #
PDF Architect (7.0.23.3193) # # # # # #
PDFelement (6.8.0.3523) # # G# # # # # # # #

Preview (10.0.944.4)

M
ac # – – # # # # # # #

Skim (1.4.37) # – – # # # # # # #

Evince (3.2.11)

Li
nu

x # # – – # # # # # # G#
Okular (0.26.1) # – – # # # # # # G#
MuPDF (1.14.0) # # – – # # # # # # G#

Chrome (70.0.3538.67)

W
eb

G# – – # # # # # #
Firefox (66.0.2) G# – – # # # # # # #
Safari (11.0.3) # # # – – # # # # # # #
Opera (57.0.3098.106) G# G# – – # # # # # #
Edge (42.17134.1.0) # # # – – # # # # # # #

 Application vulnerable G# Vulnerability limited # Not vulnerable – No editing

Table 1: Out of 28 tested PDF applications, 26 are vulnerable to at least one attack.

Infinite loop Each of the tested applications running natively on Windows, macOS,
or Linux, except three viewers, was vulnerable to at least one attack variant and
could be tricked into an endless loop. It is noteworthy, that CVE-2007-0104 still
works in 6 applications until today. Our novel attack variants, such as GoTo
loops (9 vulnerable), Action loops (9 vulnerable), Outline loops (9 vulnerable) and

14

JavaScript (13 vulnerable) cause endless loops in various PDF interpreters. The
impact is either a crash of the program, or the application becoming completely un-
responsive, often combined with a high consumption of CPU time. Browser based
PDF viewers instead perform much better: We observed that for Chrome, Fire-
fox, and Opera only the current tab gets stuck in an endless loop and becomes
unresponsive, which is why we classified the vulnerability as “limited” here. We
assume this is because modern browsers sandbox each tab and enforce resource
limits, thereby restricting the impact of, for example, a malicious or runaway web-
site.

Deflate bomb To evaluate the impact of compression bombs, we crafted a valid
PDF file containing a long string of 10 GB of repeated characters, “AAA...”, within
a compressed content stream. To display this string to the user, a PDF processing
application must first decompress it using the Deflate algorithm – with an amplifica-
tion factor of 1023:1.9 The attack resulted in memory exhaustion in 20 applications,
of which three applications crashed after a short period of time. In various cases,
the operating system slowed down noticeable or became completely unresponsive.
In contrast to attacks based on infinite loops, even browsers such as Chrome and
Firefox were fully affected, while in Opera only the current tab became unrespon-
sive. The remaining seven PDF applications did refuse to decompress the whole
stream, but instead aborted decompression after a decent amount of time – prob-
ably after a watchdog limit was reached. It is noteworthy that we did not even
have to actually open the malicious document on Windows and Linux to cause DoS
to the operating system. Both, Windows File Explorer and Gnome Nautilus file
manager try to preview the document if the containing directory is opened, and
thereby process its content resulting in resource exhaustion. MacOS (Finder) was
not vulnerable, because it stopped thumbnail generation, probably after a resource
limit was hit. Even though not tested for ethical reasons, applications processing
PDF files on the server-side are likely to be affected too. For example, Evince and
Okular, which are both vulnerable, are based on Poppler10, a popular PDF library
used by various cloud storage providers to generate preview images of uploaded PDF
documents.

4.2 Invasion of Privacy

URL invocation To evaluate if malicious documents can enforce PDF applications
to trigger a connection to an attacker controlled server, we combined various PDF

9This is the maximum compression ratio that can be achieved with Deflate. However, the PDF
file size can be drastically reduced by applying multiple Deflate filters to the stream, resulting
in a compression ratio of 1,8470,265:1. Therefore, a 10 MB file on disk is decompressed to 10
GB in memory.

10See https://poppler.freedesktop.org/.

15

https://poppler.freedesktop.org/

features with techniques to automatically call them once the document was opened.
The results for auto-triggered PDF actions resulting in URL invocation are as fol-
lows: URI action (9 vulnerable), GoToR (1 vulnerable), Launch (6 vulnerable), and
SubmitForm (11 vulnerable). For 7 applications, we could use standard JavaScript
functions to invoke a connection. In one viewer we could set a URL as the exter-
nal content stream of an image, which was loaded from the attacker’s server. In
two viewers we were able to inject a subset of XHTML, leading to HTML tags
being being processed which triggered a remote connection. Altogether, 17 PDF
applications could be tricked into (silently) invoking a connection to our server,
once a malicious document was opened by the user. It can be concluded that it
is relatively easy to craft a PDF document which reports back to the author (or
a third party) when the document is opened, in a majority of the tested applica-
tions.

Evitable metadata PDF allows additional data such as the author’s name, cre-
ation date and creator software to be embedded in documents. To identify which
information is included by modern applications, we created a simply “Hello World”
document with each tested PDF editor and spotted the metadata in the saved file,
which can either be found in the document information dictionary or within a meta-
data stream. The results are as follows.

• All editors stored the date of creation and modification.

• All editors stored the creator software (version number).

• Eight editors stored the author’s name, derived from the name of the currently
(at creation time) logged in user.

We classify a PDF editor as “vulnerable”, if it silently stores the author’s name (i.e.,
the username) in the default settings. This was the case for eight out of twelve PDF
applications with document creation/editing functionality.

We also performed a large-scale evaluation, of 294.586 PDF files downloaded from the
Internet11 of which 173.112 (58%) contained an author name. Of course, we cannot
make any statement if this information was included on purpose or by accident.
The single largest creator software of documents that contain an author name was
Microsoft Office with 64.167 files.

11We obtained the dataset by crawling the Cisco Umbrella 1 Million list of domains, see https:
//s3-us-west-1.amazonaws.com/umbrella-static/index.html.

16

https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html

Revision recovery To test if sensitive information can be recovered from a docu-
ment redacted by a PDF editor, we used two PDF files – one containing selectable
text, the other containing a scanned document (i.e., an image)12. We applied the
PDF editor’s “redact” function to draw a black rectangle over parts of the document
as well as the “delete” function to remove the text or image. In all tested PDF
editors, the “redaction” feature was found to be secure, because the actual content
of the text or image object was modified, thereby overwriting potentially sensitive
content in the file. However, we determined potential security issues in Acrobat Pro
and and two other PDF editors, whereby we deleted the content (text or image).
The removed content is not displayed anymore, but it is still contained in the file
and can be extracted. We do classify this vulnerability as “limited” in our evalu-
ation, because the “delete” function is not explicitly promoted as a secure feature,
even though users may misinterpret it as such. To conclude, redaction tools in PDF
viewers can be considered as well-developed these days. The only identified risk is
caused by removing sensitive information without using the redact feature of the
PDF editors. This approach does not provide the same security level and should be
avoided.

4.3 Information Disclosure

Form data leakage To test if form data can be leaked silently, without the user
knowing, we modified the standard U.S. individual tax return form 104013 to send
all user input to our webserver once the document is either printed or closed. This
can be done by combining the DP (“did print”) and PC (“page closed”) events
with a SubmitForm action or JavaScript. We classify the attack as successful if a
PDF application passes filled-in form data without the user being made aware of
it (i.e., no warning message or confirmation dialog displayed). Nine applications
are vulnerable to this attack, using forms that auto-submit themselves. For two
additional applications, we were able to use JavaScript to access form data and
silently exfiltrate it to our server. Nine applications did ask the user before sending
the data, which we consider as sane behaviour. Another eight PDF interpreters
(e.g., on macOS and Linux) did not support the feature of submitting PDF form
data at all.

Local file leakage Even though part of the standard, only two applications sup-
port the feature of external streams. For both applications we were able to craft
a document which embeds arbitrary files on disk into the document and silently
leaks them to an external server using both, auto-submitting forms and JavaScript.
12We used the scan of a document from WWI, describing cipher techniques, which was re-

cently declassified by the CIA and can be downloaded from: https://www.cia.gov/library/
readingroom/docs/Secret-writing-document-one.pdf.

13Available for download from https://www.irs.gov/pub/irs-pdf/f1040.pdf.

17

https://www.cia.gov/library/readingroom/docs/Secret-writing-document-one.pdf
https://www.cia.gov/library/readingroom/docs/Secret-writing-document-one.pdf
https://www.irs.gov/pub/irs-pdf/f1040.pdf

Exfiltration happens in the background once the document is opened, without the
user noticing and without any visible changes to the document. For another three
applications, we were able to include and automatically leak the contents of FDF
files and XML-based XFDF files (using the ImportData action or the ImportFDF
JavaScript function). We classify this vulnerability as limited, because it restricted
by file type – yet it should be clear that such behaviour is not desired either. Note
that this attack is different from “form data leakage” as mentioned before, because
– while FDF/XFDF files usually contain PDF form data – this attack results in the
contents of external FDF/XFDF files from disk being leaked, which may be com-
pletely unrelated to the form data of the currently opened (malicious) document.
For one viewer, in addition, we were able to use standard JavaScript functions to
access arbitrary files and the leak them.

Credential theft We used Responder14 as a rogue authentication server to obtain
the client’s NTLM hashes. We were able to leak the hashes of NTLM credentials
to our server without the user noticing or being asked for confirmation to open a
connection to the rogue network share on 12 out of the 18 Windows based PDF
viewers. Note that, by design, only applications running on Windows are affected.
We used a mixture of techniques to accomplish this goal: external streams, standard
PDF actions, as well as JavaScript. Various of the vulnerable readers where affected
by to multiple test cases. It is interesting to note that, while Foxit fixed this issue
in 2018 for PhantomPDF/Reader, we could identity bypasses using four different
techniques. This is because – apparently – accessing a share invocation via GotoR
actions (as documented in the original exploit) was prohibited, however, using other
action types, such as auto-printing a file on network share, we were again able to
enforce NTLM hashes being leaked. Of course, it is up to the configuration of
the victim’s setup (i.e., password strength, security policy, and Windows version) if
efficient cracking or relay attacks are actually feasible.

4.4 Data Manipulation

Form modification To test the feasibility of crafting PDF documents that silently
manipulate their own form data, we – once again – modified the U.S. tax return form
1040. We added an ImportData action that changes the refund account number to
the attacker’s account number once the document is printed.15 We used the WP
(“will print”) event for this purpose. Unfortunately, from an attacker’s point of view,
none of the tested applications supports importing form data from an embedded file
within the document itself – or from an external URL. By using standard PDF
14See https://github.com/SpiderLabs/Responder.
15It must be noted that, in practice, this attack does no only have a technical component. It

will only work if the attacker’s bank accepts the deposit, see https://www.irs.gov/faqs/
irs-procedures/refund-inquiries/refund-inquiries-18

18

https://github.com/SpiderLabs/Responder
https://www.irs.gov/faqs/irs-procedures/refund-inquiries/refund-inquiries-18
https://www.irs.gov/faqs/irs-procedures/refund-inquiries/refund-inquiries-18

JavaScript functions (getAnnots()[i].contents), we were however able to modify
PDF form data in 4 applications. JavaScript also allowed us to temporarily store
the original user data and undo our manipulation immediately after the document
had been printed, using the DP (“did print”) event, and to enforce that these mod-
ifications are only performed until a certain date, thereby making it more difficult
to reproduce the manipulation.

File write access Only three applications allowed to submit form data to a local
file. While two applications explicitly ask the user before writing to disk, one PDF
editor silently writes to or overwrites arbitrary files with attacker controlled content
by auto-submitting the form data to a PDF File Specification. We also tested six
standard PDF JavaScript functions to write to disk. The extractPages() function
allowed us to write data to arbitrary locations on disk in one application. The other
applications did not support writing files with JavaScript at all, asked the user for
confirmation, or showed a “Save as” dialog, instead of automatically writing the file
to a given location.

Content masking We define an application as vulnerable if we can create a docu-
ment that displays certain text in this, and only in this, application, while a com-
pletely different text is displayed in all other tested PDF viewers – with the exception
of two applications utilizing the same underlying PDF interpreter (e.g., Evince/Oku-
lar are both based on Poppler). Furthermore, if a vendor produces a “viewer” and
an “editor” version of an application, both may also display the same text. Of our
94 hand-crafted edge cases, 63 rendered differently when opened in different appli-
cations. Full details are given in Table 4 in the appendix. For three PDF interpreter
engines (six applications), we found a case where certain text was displayed only in
this interpreter. For other PDF interpreters, we could not find edge cases resulting
in a unique appearance (i.e., no other interpreter displaying the same text), therefore
we did not classify them as vulnerable. It must however be noted that test cases
can potentially be chained together, which may result in getting more applications
to render unique content. This challenge is considered as future work. Another
interesting use of this technique would be fingerprinting PDF interpreters applied
in web applications to process or preview documents, based on the rendered result
when uploading a PDF file.

4.5 Code Execution

Launch action In theory, by chaining PDF standard features, an attacker can eas-
ily get code execution by design. We combined a LaunchAction with an OpenAction
to achieve this goal and launch an executable file. Surprisingly, this worked out

19

of the box on 4 applications. The .exe file was launched without any confirmation
dialog being displayed to the user. However, it must be said that these 4 appli-
cations originated from only 2 different vendors. Each of them probably use the
same code base for both, their viewer and editor product version. The other tested
applications asked the user for confirmation (8 viewers) before executing the file,
denied to launch executable files (Acrobat Reader/Pro)16, or did not support the
LaunchAction at all in the default settings (11 viewers). The remaining 3 Linux
based viewers (Evince, Okular, MuPDF) use xdg-open17 to handle the file to be
launched, thereby delegating the security decision to a third-party application. On
our Debian GNU/Linux test system, this resulted in code execution with minimal
user interaction: by referencing an .exe from a Link annotation, the file was exe-
cuted with /usr/bin/mono, an emulator for .NET executables, if the user clicked
somewhere into the document.18 We do classify these vulnerabilities as “limited”
because – even though no confirmation dialog is presented to the user – the exploit
is not fully automated. One additional viewer – which we initially tested – was vul-
nerable too, however the latest version had removed support for the Launch action.
Finally, it must be said that, even if a confirmation dialog is presented, targeted
attackers may apply social engineering techniques to trick the victim into launching
the file.

Because the Launch action can be considered as a dangerous feature, we conducted
a large-scale evaluation of 294.586 PDF documents downloaded from the Internet,
in order to research if there are any legitimate use cases at all. Of those documents,
only 532 files (0.18%) contained a Launch action. While none of the files was clas-
sified as malicious according to the VirusTotal database19, we conclude that the
Launch action is rarely used in the wild and its support should be removed by PDF
implementations as well as the standard.

5 Exploits

In this section, we briefly describe the proof-of-concept exploits provided with this
report and the used file naming convention.

5.1 Directory Structure

The general naming convention for exploit files is {nn}-[category]-{nn}-[attack].pdf
where category is one of the five defined attack categories and attack is the (sub)attack
16Note that Adobe products use a blacklist of potentially “dangerous” file extensions. However,

various bypasses have been identified in the past [32].
17See https://www.freedesktop.org/wiki/Software/xdg-utils/.
18Readers of may ask themselves: How often did I click in this document to jump to a certain

section? Would we anticipate this can lead to code execution?
19See https://www.virustotal.com/.

20

https://www.freedesktop.org/wiki/Software/xdg-utils/
https://www.virustotal.com/

variants described in section 3 and evaluated in in section 4. This results in the fol-
lowing proof-of-concept files:

• 01-dos-01-infinite-loop.pdf

• 01-dos-02-deflate-bomb.pdf

• 02-privacy-01-url-invocation.pdf

• 02-privacy-02-evitable-metadata.pdf

• 02-privacy-03-revision-recovery.pdf

• 03-disclosure-01-form-data-leakage.pdf

• 03-disclosure-02-local-file-leakage.pdf

• 03-disclosure-03-credential-theft.pdf

• 04-manipulation-01-form-modification.pdf

• 04-manipulation-02-file-write-access.pd

• 04-manipulation-03-content-masking.pdf

• 05-rce-01-code-execution.pdf

Note that not every PDF application is vulnerable to each attack. Furthermore, the
actual exploits differ for each PDF viewer, therefore every application has its own
directory.

6 Countermeasures

In this section we discuss short-term mitigations as well as more generic, in-depth
countermeasures to be considered by implementations and future versions of the
PDF standard.

21

6.1 Towards an Unambiguous Specification

To counter infinite loops, constructs that can lead to cycles or recursion, such as
self-referencing objects, must be prohibited in implementations (e.g., by remember-
ing their path) and ambiguous formulations should be removed from the standard.
A clearly stated specification would also help to prevent content masking attacks. In
practice, this is not an easy task as it would require a formal model of the PDF stan-
dard, in order to proof that the model is cycle free and that a certain document can
only be processed in one single way. Furthermore, it must be noted that an unam-
biguous PDF specification would only protect the document structure, not embedded
data formats such as XML, JavaScript, Flash, etc.

6.2 Resource Limitation and Sandboxing

To counter compression bombs, [29] propose to halt decompression once the size of
the decompressed data exceeds an upper limit. This strategy should be applied by
PDF processing applications. It must however be noted that a single document can
contain thousands of streams to be processed in a row. In general, a good approach is
limiting the resources to be consumed by a single document, by sandboxing it – simi-
lar to a tab in a modern web browser, thereby preventing malicious documents to af-
fect the whole application or even the operating system.

6.3 Implementing Privacy by Default

PDF editors should not include excessive metadata such as usernames in the default
settings. Furthermore, all editing functions (redaction, modification, and deletion of
elements) should be performed on the actual object to prevent a third party from re-
covering previous versions of the document. Such best practices regarding metadata
and text redaction should not only be applied by PDF editors, but by all applications
that allow to export content to PDF (e.g., office suites).

6.4 Removing or Restricting JavaScript

JavaScript support in PDF applications is extremely varied. The absence of a sound
test suite to accompany the standard makes it difficult for developers to create
compliant and robust implementations. In addition the great disparity between
PDF viewers regarding their feature support complicates the effective utilization of
JavaScript by authors of PDF documents. While we could observer some viewers
to borrow a stable JavaScript engine from other projects, such as SpiderMonkey
or V8, multiple viewers provide very unstable homebrewn solutions which can be
crashed with ease. Unrelated to the used engine, many viewers implement obscure

22

JavaScript API functions without providing public documentation. Neither their
purpose nor resistance to exploitation is clear.

Given that PDF is supposed to be a format for portable documents, the need to
embed a full programming language is debatable. Many legitimate use cases of
JavaScript in PDF, such as input validation of form fields, can be covered without
a programming language, as established and proven in HTML520. Any scenario
exceeding the non-programmatic features of PDF should be considered to be imple-
mented as a web application instead of a PDF document, given that JavaScript in
modern web browsers is well researched and robustly implemented.

6.5 Identification of Dangerous Paths

Call Action

Launch Thread GotoE GotoR ImportData SubmitForm URI JavaScript

CatalogPage Annotation Field

/Print

/Open

/Base

/URI

/Names

/AA

/OpenAction

/AA

/Link

/AA

/Contents

/AA

File

Embedded File Local File URL Network Share

Figure 1: Dangerous paths identified by studying the PDF specification.
There are different special PDF objects (Catalog, Page, ...) defined that
allow to call various actions (Launch, Thread, ...) which can access a file
handle. The handles can be used to read data (e.g., local files) and to leak
it (e.g., via URL).

Most of the attacks presented in this report surprisingly have the same root cause.
To read data from the victim’s computer as well as to exfiltrate information, and even
to execute embedded files, the attacker needs access to a file handle (i.e., a PDF File
Specification). We systematically analyzed the PDF standard for methods to access
such a handle. The results are depicted in Figure 1. In the upper row, we identified
PDF objects which allow to call different actions (Page, Annotations, ...). For calling
them, most objects offers multiple alternatives. The Catalog object, for example,
defines the OpenAction or additional actions (AA) keys. Each key can be used to
launch any number of PDF actions, which are depicted in the lower part (Launch,
Thread, ...). Some actions provide multiple techniques to access a file handle. For
example, the action URI can use the keys Base or URI for this purpose. Once access

20See https://html.spec.whatwg.org/multipage/input.html#input-impl-notes.

23

https://html.spec.whatwg.org/multipage/input.html#input-impl-notes

is provided, the file handle can be used to read data from the victim (embedded file,
local file) or to exfiltrate data (URL, network share).

To build exploits, actions can be chained together. For example, an attacker can
craft a document which first imports data from a local file using the import actions
and the sends the content to the attacker’s server using the SubmitForm action. Note
that any action can be define an arbitrary number of Next actions to be performed,
thereby allowing actions to call each other.

In addition to native PDF features, JavaScript can be used within documents, open-
ing a new area for attacks. For example, with JavaScript, new annotations can be
created, which can have actions, once again leading to a file handle.

Our attacks took a path from the top the file handle. If the path was not blocked or
required user consent, the attack was successful. Many viewer applications blocked
particular paths, but failed to block all of them. Two positive examples for blocking
dangerous paths are Safari and Edge. These application blocked all but one path:
Annotation⇒Link⇒URI⇒URL. In addition, this path required user interaction by
actively clicking on the link. This example illustrates that how a secure PDF applica-
tion should work. We would like to see more applications, restricting the dangerous
paths systematically (e.g., by removing them completely or by asking the user for
consent) in order to prevent data exfiltration attacks.

Launch Thread GoToE GoToR SubmitForm ImportData URI

532 4416 0 693 64 0 46612
(0.18%) (1.49%) (0.00%) (0.23%) (0.02%) (0.00%) 15.82%)

Table 2: PDF actions in 294,586 publicly available documents.

As part of this report, we conducted a large-scale evaluation of 294,586 publicly
available PDF documents. The results on how many documents contain a certain
action is depicted in Table 2. As one can seem the only action-based PDF feature
that is widely in practice is the URI action, which can be restricted to a Link
Annotation. Insecure features instead are rarely used in real-world PDF documents.
Therefore, it can be concluded that PDF viewers should drop support for potentially
dangerous features such as the Launch action or at least not enable them in the
default settings.

7 Conclusion

PDF is more than a simple document format. Each standard compatible PDF viewer
must support a large set of additional features. While PDF exploitation caused by

24

implementation bugs, such as buffer overflow based code execution, has been a long-
standing research area with many important results, this report shows that even
native PDF features can lead to minor and major security vulnerabilities exploited
by malicious PDF documents.

References

[1] caradoc: A pragmatic approach to pdf parsing and validation.

[2] Adobe Systems. Acrobat JavaScript Scripting Guide, 2005.

[3] Adobe Systems. Adobe Supplement to the ISO 32000, BaseVersion: 1.7, Ex-
tensionLevel: 3, 2008.

[4] Adobe Systems. XMP Specification Part 1, 2012.

[5] National Security Agency. Hidden Data and Metadata in Adobe PDF Files:
Publication Risks and Countermeasures, 2008.

[6] A. Albertini. This PDF is a JPEG; or, This Proof of Concept is a Picture of
Cats. PoC 11 GTFO 0x03, 2014.

[7] C. Alonso, E. Rando, F. Oca, and A. Guzmán. Disclosing Private Information
from Metadata, Hidden Info and Lost Data, 2008.

[8] P. Bieringer. Decompression Bomb Vulnerabilities, 2001.

[9] A. Blonce, E. Filiol, and L. Frayssignes. Portable Document Format Security
Analysis and Malware Threats. BlackHat Europe, 2008.

[10] C. Carmony, X. Hu, H. Yin, V. Bhaskar, and M. Zhang. Extract me if you
can: Abusing pdf parsers in malware detectors. In NDSS. The Internet Society,
2016.

[11] T. Claburn. Use an 8-char Windows NTLM password?, February 2019.

[12] A. Denied. DFS Issue 55, 1996.

[13] P. Deutsch. DEFLATE Compressed Data Format Specification, 1996.

[14] E. Ellingsen. ZIP File Quine, 2005.

[15] D. Fifield. A better zip bomb (website), 2019.

[16] K. Foss. Washington Post’s scanned-to-PDF Sniper Letter More Revealing
Than Intended, 2002.

[17] J. Gajek. Macro malware: Dissecting a malicious word document. Network
Security, 2017(5):8–13, 2017.

25

[18] S. Garfinkel. Leaking Sensitive Information in Complex Document Files - -and
How to Prevent It. IEEE Security & Privacy, 12(1):20–27, 2013.

[19] V. Hamon. Malicious uri resolving in pdf documents. Journal of Computer
Virology and Hacking Techniques, 9(2):65–76, 2013.

[20] Chris Hummel. Why Crack When You Can Pass The Hash. SANS Institute
InfoSec Reading Room, 21, 2009.

[21] B. Krebs. Document security 101, 2005.

[22] J. Magazinius, B. Rios, and A. Sabelfeld. Polyglots: Crossing Origins by Cross-
ing Formats. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, pages 753–764. ACM, 2013.

[23] I. Markwood, D. Shen, Y. Liu, and Z. Lu. PDF Mirage: Content Masking
Attack Against Information-Based Online Services. In 26th USENIX Security
Symposium (USENIX Security 17), (Vancouver, BC), pages 833–847, 2017.

[24] M. Marlinspike. Divide and conquer: Cracking ms-chapv2 with a 100% success
rate. CloudCracker [online], 29, 2012.

[25] K. McCarthy. That classified us military report’s secrets in full, 2005.

[26] A. Nusca. Facebook settlement revealed via poor pdf redaction, 2009.

[27] N Ochoa. Pass-the-hash toolkit-docs & info, 2008.

[28] T. Parker. How to do (not so simple) form calculations, July 2006.

[29] G. Pellegrino, D. Balzarotti, S. Winter, and N. Suri. In the Compression Hor-
net’s Nest: A Security Study of Data Compression in Network Services. In 24th
USENIX Security Symposium (USENIX Security 15), pages 801–816, 2015.

[30] C. Pesce. Document metadata, the silent killer...

[31] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Friedberger, J. So-
morovsky, and J. Schwenk. Efail: Breaking S/MIME and OpenPGP Email
Encryption using Exfiltration Channels. In 27th USENIX Security Symposium
(USENIX Security 18), pages 549–566, Baltimore, MD, 2018. USENIX Associ-
ation.

[32] F. Raynal, G. Delugré, and D. Aumaitre. Malicious Origami in PDF. Journal
in Computer Virology, 6(4):289–315, 2010.

[33] Check Point Research. Ntlm credentials theft via pdf files, April 2018.

[34] Aaron Spangler. Winnt/win95 automatic authentication vulnerability (ie bug
#4), March 1997.

[35] Adobe Systems. Displaying 3d models in pdfs, June 2017.

[36] Adobe Systems. Applying actions and scripts to pdfs, April 2019.

26

[37] Adobe Systems. How to fill in pdf forms, April 2019.

[38] Adobe Systems. Starting a pdf review, April 2019.

[39] J. Wolf. Omg wtf pdf. In 27th Chaos Communication Congress (27C3), 2010.

A Appendix

Pages loop GoTo loop Action loop Calc Outline ObjStm JavaScript Deflate
Application A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 D1 D3 E2 E3 F1 G1 G2 G3 DB

Acrobat Reader DC

W
in

do
w

s

F # # / # # # # / / F / /
Foxit Reader # # / # # F F F # F F # # # # # / # / /
PDF-XChange Viewer F F F F # # # # # # # # # # # # # # # /
Perfect PDF Reader # # F F # # # # # # # # # # / # # # # /
PDF Studio Viewer # # # # # # # # # # # # # # # # # # # /
Nitro Reader # # # # F # # # # # # # # F F # / / / #
Acrobat Pro DC # # # # # # # F # # # # # # # / / F / /
Foxit PhantomPDF # # / # F F F F # F F # # # # # / # / /
PDF-XChange Editor # # # # # / / # # F F # # # # # / # / /
Perfect PDF Premium # # F F # # # # # # # # / # / # # # # /
PDF Studio Pro # # # # # # # # # # # # # # # # # # # /
Nitro Pro # # # # F # # # # # # # # F F # / / / #
Nuance Power PDF # # F F F # # F F F F F # F F # / # / F
iSkysoft PDF Editor # # # # # # # # # # # # # / / # # # # #
Master PDF Editor # # # # F # # # # # # # # # # # / # / #
Soda PDF Desktop # # # # # # # # # F F # # F F # / F F /
PDF Architect # # # # # # # # # F F # # F F # / F F /
PDFelement # # # # # # # # # # # # # F / # # # # #

Preview

M
ac

F F F # # # # # # # # /
Skim # # # # # # # # F F F # # # # # # # # /

Evince

Li
nu

x

F
Okular # # # # # # # # # # # # # # # # / # / F
MuPDF # # # # # # # # # # # # # # # # / / / #
Chrome

W
eb

(/) # # # # # (/) # # # # # (/) # # /
Firefox # # # (/) # # # # # # # # # # # # # # # /
Safari #
Opera # # # # (/) # # # # # (/) # # # # # (/) # # (/)
Edge #

F Application crashes / Applications hangs (/) Only current tab hangs # Application not vulnerable

Table 3: Detailed results for the DoS class of attacks.

27

A
p
p
li
ca

ti
on

A
1

A
3

A
4

A
5

B
1

C
1

C
2

C
3

C
4

C
6

C
7

C
8

C
X

D
1

D
2

D
4

E
3

E
4

F
1

F
3

G
1

G
3

H
2

H
3

H
5

H
6

I3
J1

K
1

K
4

K
5

K
6

K
7

K
8

M
3

M
4

N
1

N
2

N
3

N
4

N
5

P
1

P
3

P
4

P
6

P
7

P
8

P
9

P
X

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
X

A
cr

ob
at

R
ea

d
er

/P
ro

2
2

1
1

1
–

1
1

–
1

1
–

1
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

1
2

2
2

1
1

1
–

–
–

2
2

2
–

–
–

–
–

–
2

2
–

–
–

–
F
ox

it
R

ea
d
er

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
1

1
1

1
1

1
1

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
F
ox

it
P
h
an

to
m

P
D

F
2

2
2

1
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

2
1

1
1

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

P
D

F
-X

C
h
an

ge
V

ie
w

er
2

2
2

2
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
1

1
2

1
2

1
2

1
1

2
1

2
2

2
2

2
2

1
2

2
2

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

P
D

F
-X

C
h
an

ge
E
d
it

or
2

2
2

1
2

2
1

1
2

1
1

2
1

2
2

2
2

–
2

2
2

2
2

1
2

1
2

1
2

2
1

2
2

2
1

2
2

1
2

2
2

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

N
it

ro
R

ea
d
er

/P
ro

2
2

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
1

2
2

1
1

–
1

–
1

2
1

2
1

1
2

2
2

1
1

2
1

2
2

2
1

2
2

2
2

2
–

–
–

–
2

2
2

2
2

2
2

2
N

u
an

ce
P
ow

er
P
D

F
2

2
1

1
1

1
1

1
1

1
1

1
1

2
2

2
1

1
1

2
1

1
–

2
–

2
2

2
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

S
o
d
a

P
D

F
D

es
k
to

p
2

2
2

1
2

2
1

1
2

1
1

2
1

2
2

2
2

–
1

1
1

1
1

1
1

1
2

1
1

1
1

1
1

1
2

2
1

1
2

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

P
D

F
A

rc
h
it

ec
t

2
2

2
1

2
2

1
1

2
1

1
2

1
2

2
2

2
–

1
1

1
1

1
1

1
1

2
1

1
1

1
1

1
1

2
2

1
1

2
2

2
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
P
op

p
le

r
(E

v
in

ce
/O

k
u
la

r)
2

2
2

1
2

1
–

–
1

–
–

1
–

2
2

2
2

1
2

2
–

–
–

–
–

–
2

–
2

1
2

2
2

2
2

2
2

1
2

2
2

2
–

–
2

2
2

2
2

2
2

–
–

2
2

–
–

–
–

C
h
ro

m
e

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

1
1

1
1

1
1

1
1

1
2

1
2

2
2

1
2

2
1

1
2

2
1

1
1

2
2

2
2

2
2

2
2

2
2

2
1

1
1

1
F
ir

ef
ox

2
2

2
1

2
1

1
1

1
1

1
1

1
2

2
2

2
2

1
2

–
–

1
–

1
–

–
–

–
1

–
2

2
2

–
–

1
1

2
2

2
–

–
–

–
2

2
2

2
2

2
–

–
2

2
–

–
–

–
O

p
er

a
2

2
2

1
2

1
1

1
1

1
1

1
1

2
2

2
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

–
–

–
–

P
er

fe
ct

P
D

F
R

ea
d
er

1
1

2
–

1
1

1
2

1
1

2
1

1
1

1
1

1
1

2
2

1
2

1
1

1
1

2
1

1
1

1
2

2
2

–
–

2
1

2
2

2
1

2
–

–
2

–
2

–
2

–
2

–
–

–
2

–
–

–
P
er

fe
ct

P
D

F
P
re

m
iu

m
1

1
2

1
2

1
1

2
1

1
2

1
1

1
1

1
2

1
2

2
1

2
1

1
1

1
2

1
1

1
1

2
2

2
–

–
2

1
2

2
2

1
–

–
–

2
–

2
–

2
–

–
–

2
2

–
–

–
–

P
D

F
S
tu

d
io

V
ie

w
er

/P
ro

1
2

2
1

2
2

–
–

2
–

–
2

–
2

2
2

2
–

2
2

1
1

1
1

1
1

–
1

1
1

1
1

1
1

2
2

2
1

2
2

2
1

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
iS

k
y
so

ft
P
D

F
E
d
it

or
1

1
2

1
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

M
as

te
r

P
D

F
E
d
it

or
1

1
2

1
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

P
D

F
el

em
en

t
1

1
2

1
2

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
1

1
1

1
1

1
1

1
1

2
1

2
2

2
1

2
2

1
1

2
2

1
1

1
2

2
2

2
2

2
2

2
2

2
2

1
1

1
1

P
re

v
ie

w
1

2
2

1
2

1
–

–
1

–
–

1
–

2
2

2
2

1
2

2
–

–
–

–
–

–
2

–
–

1
–

2
2

2
2

2
2

1
2

2
2

–
–

–
2

2
2

2
2

2
2

–
–

2
2

–
–

–
–

S
k
im

1
2

2
1

2
1

–
–

1
–

–
1

–
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

2
2

2
1

2
2

2
–

–
–

2
2

2
2

2
2

2
–

–
2

2
–

–
–

–
M

u
P
D

F
1

2
2

1
2

2
1

1
2

1
1

2
1

2
2

2
2

2
2

2
1

1
2

1
2

1
2

1
2

1
1

2
2

2
1

1
2

1
2

2
2

1
1

1
2

2
2

2
2

1
1

1
1

2
2

1
1

1
1

S
af

ar
i

1
2

2
1

2
1

–
–

1
–

–
1

–
2

2
2

2
1

2
2

–
–

–
–

–
–

2
–

–
1

–
2

2
2

2
2

2
1

2
2

2
–

–
–

2
2

2
2

2
2

2
–

–
2

2
–

–
–

–
E
d
ge

1
1

2
–

2
–

–
–

–
–

–
–

–
2

2
2

2
2

2
2

2
2

–
–

–
–

–
–

2
2

2
2

2
2

1
1

2
1

2
2

2
2

2
–

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

1
F
ir

st
te

xt
be

in
g

di
sp

la
ye

d
2

Se
co

nd
te

xt
be

in
g

di
sp

la
ye

d
–

N
o

te
xt

be
in

g
di

sp
la

ye
d

T
ab

le
4:

D
et

ai
le

d
re

su
lt

s
fo

r
th

e
co

nt
en

t
m

as
ki

ng
cl

as
s

of
at

ta
ck

s.

28

	Background
	Powerful Document Features
	Basic Blocks
	PDF Forms
	Actions & JavaScript

	Attacker Model
	Actions of the Victim
	Attacker's Capabilities
	Winning Condition

	Attacks
	Denial of Service
	Invasion of Privacy
	Information Disclosure
	Data Manipulation
	Code Execution

	Evaluation
	Denial of Service
	Invasion of Privacy
	Information Disclosure
	Data Manipulation
	Code Execution

	Exploits
	Directory Structure

	Countermeasures
	Towards an Unambiguous Specification
	Resource Limitation and Sandboxing
	Implementing Privacy by Default
	Removing or Restricting JavaScript
	Identification of Dangerous Paths

	Conclusion
	References
	Appendix

