
1 Trillion Dollar Refund – How To Spoof PDF Signatures
Vladislav Mladenov∗

Vladislav.Mladenov@rub.de
Ruhr University Bochum, Chair for

Network and Data Security

Christian Mainka∗
Christian.Mainka@rub.de

Ruhr University Bochum, Chair for
Network and Data Security

Karsten Meyer zu Selhausen
Karsten.MeyerzuSelhausen@hackmanit.de

Hackmanit GmbH

Martin Grothe
Martin.Grothe@rub.de

Ruhr University Bochum, Chair for
Network and Data Security

Jörg Schwenk
Joerg.Schwenk@rub.de

Ruhr University Bochum, Chair for
Network and Data Security

ABSTRACT
The Portable Document Format (PDF) is the de-facto standard for
document exchange worldwide. To guarantee the authenticity and
integrity of documents, digital signatures are used. Several public
and private services ranging from governments, public enterprises,
banks, and payment services rely on the security of PDF signatures.

In this paper, we present the first comprehensive security eval-
uation on digital signatures in PDFs. We introduce three novel
attack classes which bypass the cryptographic protection of dig-
itally signed PDF files allowing an attacker to spoof the content
of a signed PDF. We analyzed 22 different PDF viewers and found
21 of them to be vulnerable, including prominent and widely used
applications such as Adobe Reader DC and Foxit. We addition-
ally evaluated eight online validation services and found six to be
vulnerable. A possible explanation for these results could be the
absence of a standard algorithm to verify PDF signatures – each
client verifies signatures differently, and attacks can be tailored to
these differences. We, therefore, propose the standardization of a
secure verification algorithm, which we describe in this paper.

All findings have been responsibly disclosed, and the affected
vendors were supported during fixing the issues. As a result, three
generic CVEs for each attack class were issued [50–52]. Our re-
search on PDF signatures and more information is also online avail-
able at https://www.pdf-insecurity.org/.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
PDF, signature
ACM Reference Format:
Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe, and Jörg Schwenk. 2019. 1 Trillion Dollar Refund – How To Spoof
∗Both authors equally contributed to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3339812

PDF Signatures. In 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’19), November 11–15, 2019, London, United Kingdom.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3319535.3339812

1 INTRODUCTION
Introduced in 1993 by Adobe Systems, the Portable Document For-
mat (PDF) was designed as a solution for the consistent presentation
of documents, independent of the operating system and hardware.
Today, the PDF format has become the standard for electronic doc-
uments in our daily workflow. The total number of PDF files in
the world is hard to guess, but according to Adobe System’s Vice
President of Engineering, Phil Ydens, there were about 1.6 billion
PDF files on the web in 2015 [3], whereby 80% were created in the
same year. This leads him to estimate that about 2.5 trillion PDF files
were created since 2015. Whether this is correct or not, PDF files
are heavily used in everyone’s life – for exchanging information,
for creating and archiving invoices and contracts, for submitting
scientific papers, or for collaborating and reviewing texts.
PDF Digital Signatures. The PDF specification supports digital
signatures since 1999 in order to guarantee that the document
was created or approved by a specific person and that it was not
altered afterward. PDF digital signatures are based on asymmetric
cryptography whereby the signer possess a public and private key
pair. The signer uses his private key to create the digital signature.
Any document modification afterward invalidates the signature and
leads to an error message thrown by the corresponding PDF viewer
or validation service. PDF digital signatures must not be confused
with electronic signatures, which are the electronic equivalent of
handwritten signatures; this is done by basically adding an image
of the signer’s handwritten signature into the document. Electronic
signatures do not provide any cryptographic protection so that
spoofing attacks are trivial and not further considered.

In 2000, President Bill Clinton enacted a federal law facilitating
the use of electronic and digital signatures in interstate and foreign
commerce by ensuring the validity and legal effect of contracts. He
even approved the eSign Act by digitally signing it [35]. Since 2014,
organizations delivering public digital services in an EU member
state are required to support digitally signed documents, which are
even admissible as evidence in legal proceedings [48]. In Austria,
every governmental authority digitally signs any document [17,
§19]. In addition, any new law is legally valid after its announce-
ment within a digitally signed PDF. Several countries like Brazil,
Canada, the Russian Federation, and Japan also use and accept

https://www.pdf-insecurity.org/
https://doi.org/10.1145/3319535.3339812
https://doi.org/10.1145/3319535.3339812

Figure 1: Validly signed PDF document by Amazon with a
spoofed content. Adobe Acrobat DC claims that the ‘docu-
ment has not beenmodified since the signaturewas applied’.

digitally signed documents [53]. Outside governmental services
digitally signed PDFs are used by the private sector to sign in-
voices and contracts: e.g., invoices by Amazon, Decathlon, Sixt, and
even more are concluded secretly between companies. Even in the
academic world, PDF signatures are used to sign scientific papers
(e.g., ESORICS proceedings) as evidence of the paper’s submission
state. According to Adobe Sign, the company processed 8 billion
electronic and digital signatures in 2017 alone [1].

We thus raise the question: Is it possible to spoof a digitally signed
PDF document in a way such that the spoofed document is indistin-
guishable from a valid one?.
Novel Attacks on PDF Signatures. In this paper, we show how
to spoof a digitally signed PDF document. The only requirement
of our attacks is access to a signed PDF (e.g., an Amazon invoice).
Given such a PDF, our attacks allow an attacker to change the PDF’s
content arbitrarily without invalidating its signature – see Figure 1.
Plausible attack scenarios whichmay abuse the vulnerabilities could
include, for example, the manipulation of the billing date on the
digitally signed receipt to extend the warranty period of a product
or changing the contract’s information to attain more resources
than agreed upon.

We systematically analyze the verification process of PDF sig-
natures in different desktop applications as well as in server im-
plementations, and we introduce three novel attack classes, see
Figure 2. Each of them gives a blueprint for an attacker to modify a
validly signed PDF file in such way that for the targeted viewer, the
displayed content is altered without being detected by the viewer’s
signature verification code – all elements in the GUI related to sig-
nature verification are identical to the original, unaltered document.

On a technical level, each attack class abuses a different step in
the signature validation logic.
(1) The Universal Signature Forgery (USF) manipulates meta

information in the signature in such a way that the targeted
viewer application opens the PDF file, finds the signature, but
is unable to find all necessary data for its validation. Instead of
treating the missing information as an error, it shows that the
contained signature is valid.

(2) The Incremental Saving Attack (ISA) abuses a legitimate
feature of the PDF specification, which allows updating a PDF
file by appending the changes. The feature is used, for example,
to store PDF annotations, or to add new pages while editing

Signed PDF USF SWAISA

Header

Body (Manipulated)

Xref Table

Trailer

Signature: [a,b,c,d]

Xref Table Updates

Trailer

Header

Body

Xref Table

Trailer

Signature: [a,b,c,d]

Xref Table Updates

Trailer

 Body (Manipulated)

Xref Table

Trailer

Header

Body

Xref Table

Trailer

Signature: [a,b,c*,d*]

Body (Manipulated)

Xref Table Updates

Xref Table Updates

Trailer

Header

Body

Xref Table

Trailer

Signature: [a,b,c,d]

Xref Table Updates

Trailer

a

b

c

d

a

b

c*

d*
Protected by the signature

Content Manipulation

Figure 2: Anoverviewof the attacks introduced in this paper:
USF, ISA, and SWA. Each attack relies on a different injection
point for malicious content without invalidating the digital
signature.

the file. The main idea of the ISA is to use the same technique
for changing elements, such as texts, or whole pages included
in the signed PDF file to what the attacker desires. The PDF
specification does not forbid this, but the signature validation
should indicate that the document has been altered after signing.
We introduce four variants of ISA masking the modification
made without raising any warnings that the document was
manipulated.

(3) The SignatureWrappingAttack (SWA) targets the signature
validation logic by relocating the originally signed content to
a different position within the document and inserting new
content at the allocated position. We introduce three differ-
ent variants of SWA which we used to bypass the signature
validation.

Large-Scale Evaluation.We provide the first large-scale evalua-
tion covering 22 different PDF viewers installed onWindows, Linux,
or MacOS. We systematically analyzed the security of the signature
validation on each of them and found signature bypasses in 21 of 22
of the viewers, including Adobe Reader DC and Foxit. Additionally,
we analyzed eight online validation services supporting signature
verification of signed PDF files. We found six of them to be vulner-
able against at least one of the attacks, and included, among others,
DocuSign – one of the worldwide leading cloud services providing
electronic signatures and ranked #4 on the Forbes Cloud 100 [15].
The results are reasoned by the fact that:

(1) There is almost no related work regarding the security of
digitally signed PDF files, even though integrity protection
is part of the PDF specification since 1999.

(2) The PDF specification does not provide an implementation
guideline or a best-practices document regarding the sig-
nature validation. Thus, developers implement a security
critical component without having a thorough understand-
ing regarding the actual risks.

Contributions. The contributions of this paper are:
• We developed three novel attack classes on PDF signatures.
Each class targets a different step in the signature validation
process and enables an attacker to bypass a PDF’s integrity
protection completely, shown in section 4.

• We provide the first in-depth security analysis of PDF appli-
cations. The results are alarming: out of 22 popular desktop

viewers, we could bypass the signature validation in 21 cases,
as seen subsection 5.1.

• We additionally analyzed eight online validation services
used within the European Union and worldwide for vali-
dating signed documents. We could bypass the signature
validation in six cases, shown in subsection 5.2.

• Based on our experiences, we developed a secure signature
validation algorithm and communicated it with the applica-
tion vendors during the responsible disclosure process, as
seen in section 6.

• By providing the first in-depth analysis of PDF digital signa-
tures, we pave the road for future research. We reveal new
insights and show novel research aspects regarding PDF
security, shown in section 8.

Responsible Disclosure. In cooperation with the BSI-CERT, we
contacted all vendors, provided proof-of-concept exploits, and helped
them to fix the issues. As a result, the following three generic CVEs
for each attack class covering all affected vendors were issued [50–
52].

2 PDF BASICS
This section deals with the foundations of the Portable Document
Format (PDF). We give an overview of the file structure and explain
how the PDF standard for signatures is implemented.

2.1 Portable Document Format (PDF)
A PDF consists of 4 parts: header, body, xref table, and a trailer, as
depicted in Figure 3.
Header. The header is the first line within a PDF and defines the
interpreter version to be used. The provided example uses version
PDF 1.7.
Body. The body specifies the content of the PDF and contains
text blocks, fonts, images, and metadata regarding the file itself.
The main building blocks within the body are objects, which have
the following structure: Each object starts with an object number
followed by a generation number. The generation number should
be incremented if additional changes are made to the object.

1 1 0 obj
2
3
4
5 ...
6 endobj

Object Number
Generation Number
Constant String “obj”

Listing 1: Example of an object declaration within the
body.

In the example depicted in Figure 3, the body contains four
objects: Catalog, Pages, Page, and stream. The Catalog object is the
root object of the PDF file. It defines the document structure and
can additionally declare access permissions. The Catalog refers to a
Pages object which defines the number of the pages and a reference
to each Page object (e.g., text columns). The Page object contains
information on how to build a single page. In the given example, it
only contains a single string object “Hello World!”.

%PDF-1.7

0 5
0000000000 65535 f
0000000015 00000 n
0000000060 00000 n
0000000135 00000 n
0000000245 00000 n

/Root 1 0 R
startxref
300

15 Byte

60 Byte

300 Byte

%%EOF

135 Byte

245 Byte

xref

trailer

1 0 obj Catalog

/Pages 2 0 R

2 0 obj Pages

/Kids [3 0 R]

3 0 obj Page

/Contents 4 0 R

4 0 obj stream

stream
Hello World!
endstream

Body

Header

Xref
Table

Trailer

Byte Offset

0 Byte

Document Parts

Figure 3: A simplified example of a PDF file’s internal struc-
ture. We depict the object names after the obj string for clar-
ification.

Xref table. The Xref table contains information about all PDF ob-
jects. An Xref table can contain one or more sections.

• Each Xref table section starts with a line consisting of two
integer entries a b (e.g., “0 5” as shown in Figure 3) which
indicates that in the Xref table the following b = 5 lines
describe objects with ID (also known as object numbers)
ranging from a ∈ {0, . . . ,b − 1} = {0, . . . , 4}

• Each object entry (a ∈ {0, . . . ,b − 1}) in the Xref table has
three entries x y z, where x defines the byte offset of the
object from the beginning of the document; y defines its
generation number, and z ∈ {′n′,′ f ′} describes whether the
object is in-use (′n′) or not (′ f ′, say “free”). For example,
the line “0000000060 00000 n” is the third line after “0 5”
and, thus, describes the in-use object with object number 2
and generation number 0 at byte offset 60 (see “2 0 obj” in
Figure 3).

Trailer. After a PDF file is read into memory, it is processed from
the end to the beginning. Thus, the Trailer is the first processed
content of a PDF file. It contains references to the Catalog (1 0 R)
and the Xref table.

2.2 Creating a PDF Signatures
This section explains how a digitally signed PDF file is built.

Incremental Saving. PDF Signatures rely on a feature of PDF
called incremental saving (also known as incremental updates), al-
lowing the modification of a PDF file without changing the previous
content.

In Figure 4, an original document (shown on the left side) is
being modified via incremental saving by attaching a new body, as
well as a new Xref table, and a new Trailer at the end of the file.
Within the body, new objects can be defined. A new Pages object

Header

Body

Xref Table

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table Updates

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table Updates

Trailer

 Body Updates

Xref Table Updates

Trailer

Update 1

Update 2

Figure 4: Multiple incremental savings applied on a PDF file.

can be defined, referencing two pages, for example, /Kids [3 0 R 3

0 R]. For reasons of simplicity, the same content (3 0 R) was used
twice here. The Xref table contains only a description of the newly
defined objects. The new Trailer contains a reference to the Catalog
(it could be the old Catalog or an updated one), the byte offset of
the new Xref table, and the byte offset of the previously used Xref
table. This scheme is applied for each incremental saving.
Structure of a Signed PDF. The creation of a digital signature on
a PDF file relies on incremental saving by extending the original
document with objects containing the signature information.

In Figure 5, an example of a signed PDF file is shown. The original
document is the same document as depicted in Figure 3. By signing
the document, an incremental saving is applied and the following
content is added: a new Catalog, a Signature object, a new Xref
table referencing the new object(s), and a new Trailer . The new
Catalog extends the old one by adding a new parameter Perms,
which defines the restrictions for changes within the document.
The Perms parameter references to the Signature object.

The Signature object (5 0 obj) contains information regarding
the applied cryptographic algorithms for hashing and signing the
document. It additionally includes a Contents parameter contain-
ing a hex-encoded PKCS7 blob, which holds the certificates as well
as the signature value created with the private key that corresponds
to the public key stored in the certificate. The ByteRange parameter
defines which bytes of the PDF file are used as the hash input for
the signature calculation and defines two integer tuples:

(a,b) : Beginning at byte offset a, the following b bytes are used
as the first input for the hash calculation. Typically, a=0 is
used to indicate that the beginning of the file is used while
a+b is the byte offset where the PKCS#7 blob begins.

(c,d) : Typically, byte offset c is the end of the PKCS#7 blob, while
c+d points to the last byte range of the PDF file and is used
as the second input to the hash calculation.

%PDF-1.7

%%EOF

Xref Table

Trailer

1 0 obj Catalog

2 0 obj Pages

3 0 obj Page

4 0 obj stream

Original
Document

1 0 obj Catalog

5 0 obj Signature

/Pages 2 0 R
/Perms 5 0 R

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange [a b c d]

Xref Table

Trailer

New Xref
Table

New
Trailer

New Signature
Body

%%EOF

Si
gn

at
ur

e
U

p
da

te
 1

Figure 5: A simplified overview of a signed PDF file.

According to the specification, it is recommended to sign the
whole file except for the PKCS#7 blob (located in the range between
a+b and c) [21].

2.3 Verifying a signed PDF File
If a signed PDF file is opened with a desktop application that sup-
ports signatures, it immediately starts to verify it by: (1) extracting
the signature from the PDF and applying the cryptographic opera-
tions to verify its correctness and (2) verifying if the used signing
keys are trusted, e.g., an x.509 certificate. One thing that all appli-
cations had in common is that by default, they do not trust the
operating system’s keystore. Similar to web browsers such as Fire-
fox, they distribute their own keystore and keep the list of trusted
certificates up to date. Additionally, every viewer allows the uti-
lization of a different keystore containing trusted certificates. This
feature is interesting for companies using their own Certificate
Authority (CA) and disallowing the usage of any other CA. As a
result, similar to key pinning, the viewer can be configured to trust
only specific certificates.

3 ATTACKER MODEL
In this section, we describe the attacker model including the attack-
ers’ capabilities and the winning conditions.
Victim. A victim can be either a human who opens the file using
a certain PDF desktop application or a website offering an online
validation service.
Attacker Capabilities. It is assumed that the attacker is in posses-
sion of a signed PDF file. The attacker does not possess the proper
private key that was used to sign it. Also, we assume that the victim

(1.) Signature is valid and trusted.

(2.) Untrusted key is used to sign the document.

(3.) Signature value is invalid.

UI-Layer 1: Automatically shown once PDF is opened

UI-Layer 2

Click to open UI-Layer-2

Your Amazon Invoice #345123
(PDF Content)

(a) A screenshot of Adobe Acrobat DC is depicted after opening a signed PDF
document. A signature validation bar (UI-Layer 1) is automatically shown. A
signature panel (UI-Layer 2) can be opened by pressing the corresponding but-
ton. The panel provides more details, e.g., the error message or email address
of the signer.

(b) There are 3 validation states: (1.) A green icon indi-
cates a valid and trusted signature. (2.) If the icon appears
in yellow, the key used to sign the PDF is untrusted, e.g.,
because a self-generated certificate is used. (3.) The red
icon indicates an invalid signature, e.g., if the PDF file is
modified.

Figure 6: PDF signature validation with two UI-Layers.

only trusts specific certificates (e.g., via the trust store) and the
attacker does not possess a single private key that is trusted by
the victim. Thus, malicious PDF files which are digitally signed by
the attacker with a self-generated or untrusted certificate will be
not verified successfully by the viewer. Apart from this restriction,
the attacker can arbitrarily modify the PDF file, for example, by
changing the displayed content.

The attacker finally sends the modified PDF file to a victim,
where the file is then processed.
Winning Conditions. For the successful execution of this attack,
we have defined two conditions:
Cond. 1) When opening the PDF file, the target application, i.e., the

viewer or online service, shows a UI displaying that it is
validly signed and is identical to the originally unmodified
signed PDF file.

Cond. 2) The viewer application displays content which is different
from the original file.

For viewer applications, both winning conditions must be met.
For the online validation services, only the first condition must be
fulfilled because online services do not show the content of a PDF
file. Instead, they generate a report containing the results of the
verification, see Figure 11. Therein, the services show whether the
PDF file is validly signed.

Desktop viewer applications differ substantially in displaying
the results of the signature verification. To classify if an attack is
successful and to determine if the victim could detect the attack,
we defined two different UI-Layer:

• UI-Layer 1 represents the UI information regarding the sig-
nature validation which is immediately displayed to the user
after opening the PDF file. It is shown without any user in-
teraction. Examples for Adobe Acrobat DC UI-Layer 1 are
presented in the top part of the purple box in Figure 6.

• UI-Layer 2 provides extended information regarding the sig-
nature validation. It can be accessed by clicking on the respec-
tive menu option. Examples for Adobe Acrobat DC UI-Layer
2 are displayed in the bottom-left part of the green box in
Figure 6.

If the information presented on the UI-Layer 2 states that the
signature is invalid or the document has been modified after the
application of the signature, the attack can still be classified as
successful for UI-Layer 1.

In Figure 6, an example of a successful signature validation on
UI-Layer 1 and UI-Layer 2 is presented. After opening the PDF file,
the information Signed and all signatures are valid is displayed.
Further information is revealed by clicking on the Signature Panel
and can be seen in the green box of UI-Layer 2.
Self-Signed PDFs. We do not consider self-signed PDF as a legiti-
mate attack and neither use nor rely on them because a self-signed
PDF can clearly be distinguished from a PDF signed with a trusted
certificate; cf. green and yellow icon in Figure 6.

4 HOW TO BREAK PDF SIGNATURES
In this section, we present three novel attack classes on PDF sig-
natures: Universal Signature Forgery (USF), Incremental Saving
Attack (ISA), and Signature Wrapping Attack (SWA). All attack
classes bypass the PDF’s signature integrity protection, allowing the
modification of the content arbitrarily without the victim noticing.
The attacker’s goal is to place malicious content into the protected
PDF file, such that the previously defined winning conditions for
viewer applications and online validation services are satisfied.

During the security analysis, we designed many broken PDF
files for each attack class which are clearly violating the PDF speci-
fication in order to bypass the signature verification process.

We also learned that nearly every PDF viewer has a high level of
error-tolerance so that these PDF files could be successfully opened
even if required parameters are missing. We can only assume that

this is due to the individual interpretation of the PDF specification
by each vendor.

4.1 Universal Signature Forgery (USF)
The main idea of Universal Signature Forgery (USF) is to disable the
signature verification while the application viewer still shows a suc-
cessful validation on the UI layer. This attack class was inspired by
existing attacks applied to other message formats like XML [42] and
JSON [33]. Such attacks either remove all signatures or use insecure
algorithms like none in JSON signatures. For PDFs we estimated
two possible approaches – either to remove information within
the signature which makes the validation impossible, or to remove
references to the signature to avoid the validation. Removing refer-
ences did not lead to any successful attack. Thus, we concentrated
on manipulations within the signature. In this case, the attacker
manipulates the signature object in the PDF file, trying to create
an invalid entry within this object. Although the signature object
is provided, the validation logic is not able to apply the correct
cryptographic operations. This leads to the situation that a viewer
shows some signature information even though the verification
is being skipped. In the end, we define 24 different attack vectors,
eight of them are depicted in Figure 7.

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents ____
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents null
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents 0x00
/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7

/ByteRange [a b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange ____

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange null

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value
/ByteRange [a -b c d]

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents sig.value

Variant: 1 Variant: 2 Variant: 3 Variant: 4

Figure 7: Different USF attack variants manipulating the sig-
nature object entries to bypass the signature validation.

In the given example, the attack vectors target two values: a) the
entry Contents contains the key material as well as the signature
value and b) the entry ByteRange defines the signed content in the
file. The manipulation of these entries is reasoned by the fact that
we either remove the signature value or the information stating
which content is signed. InVariant 1, as depicted in Figure 7, either
Contents or ByteRange are removed from the signature object.
Another possibility is defined in Variant 2 by removing only the
content of the entries. In Variants 3 and 4, invalid values were
specified and tested. Such values are for instance null, a zero byte
(0x00), and invalid ByteRange values like negative or overlapping
byte ranges. Providing such tests is common for penetration testers
since many implementations behave abnormally when processing
these special byte sequences.

4.2 Incremental Saving Attack (ISA)
This class of attack relies on the incremental saving feature. The
idea of the attack is to make an incremental saving on the document
by redefining the document’s structure and content using the Body
Updates part. The digital signature within the PDF file protects
precisely the part of the file defined in the ByteRange. Since the
incremental saving appends the Body Updates to the end of the

file, it is not part of the defined ByteRange and thus not part of
the signature’s integrity protection. To summarize, the signature
remains valid, although the Body Updates changed the displayed
content.

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates +
Signature Object

Variant: 1

Header

Body

Xref Table

Trailer

 Body Updates

Xref Table

Trailer

 Body Updates

Trailer

Protected by the signature

Content Manipulation

Variant: 2 Variant: 3 Variant: 4

Figure 8: Bypassing the signature protection by using incre-
mental saving. In (1), the main idea of the attack is depicted,
while (2)-(4) are variants to obfuscate themanipulations and
prevent a viewer to display warnings.

During our research, we elaborated four variants of ISA. These
variants are reasoned by the fact that some vendors recognized that
incremental saving is dangerous when concerning PDF signatures.
These vendors implemented countermeasures to detect changes
after the document’s signing. As part of our black-box analysis,
we were able to determine these countermeasures and find generic
bypasses that worked for multiple viewers which we describe below.

Variant 1: ISA with Xref table and Trailer. For Variant 1 of
the ISA class, as depicted in Figure 8, only two of the evaluated
signature validators were susceptible to the attack. This is not
very surprising since this type of modification is exactly what a
legitimate PDF application would do when editing or updating a
PDF file. A digital signature in PDF is designed to protect against
this behavior; the signature validator recognizes that the document
was updated after signing it and shows a warning respectively. To
bypass this detection, we found two possibilities. (1) We included an
emptyXref table. This can be interpreted as a sign that no objects are
changed by the last incremental saving. Nevertheless, the included
updates are processed and displayed by the viewer. (2) We used
an Xref table that contains entries for all manipulated objects. We
additionally added one entry which has an incorrect reference (i.e.,
byte offset) pointing to the transform parameters dictionary, which
is part of the signature object. The result of these manipulations
is that the viewer application does not detect the last incremental
saving. No warning is shown that the document has been modified
after signing it but the PDF viewer displays the new objects.
Variant 2: ISAwithoutXref table andTrailer. Some of the view-
ers detected the manipulation by checking if a new Xref table and
Trailer were defined within the new incremental saving. By remov-
ing the Xref table and the Trailer , a vulnerable validator does not
recognize that incremental saving has been applied and success-
fully verifies the signature without showing a warning. The PDF

file is still processed normally by displaying the modified document
structure. The cause of this behavior is that many of the viewers are
error tolerant. In the given case, the viewer completes the missing
Xref table and Trailer and processes the manipulated body.
Variant 3: ISA with a Trailer. Some of the PDF viewers do not
open the PDF file if a Trailer is missing. This led to the creation of
this attack vector containing a manipulated Trailer at the end of the
file. To our surprise, the Trailer does not need to point to an Xref
table but rather to any other byte offset within the file. Otherwise,
the verification logic detects the document manipulation.
Variant 4: ISA with a copied signature and without a Xref
table and Trailer. The previous manipulation technique was im-
proved by copying the Signature object within the last incremental
saving. This improvement was forced by some validators which
require any incremental saving to contain a signature object if the
original document was signed. Otherwise, they showed a warning
that the document was modified after the signing.

By copying the original Signature object into the latest incre-
mental saving, this requirement is fulfilled. The copied Signature
object, however, covers the old document instead of the updated
part. To summarize, a vulnerable validator does not verify whether
each incremental saving is signed, but only if it contains a signature
object. Such verification logic is susceptible to ISA.

4.3 Signature Wrapping Attack (SWA)
The Signature Wrapping Attack (SWA) introduces a novel tech-
nique to bypass signature protection without using incremental
saving. During our research, we observed that the part of the docu-
ment containing the signature value is excluded from the signature
computation and thus it is not integrity protected. The ByteRange
defines the exact size of this unprotected space. Consequentially,
we focused on manipulations on the ByteRange entries to increase
the size of the unprotected space and allowing the injection of
malicious content.

The main idea is to move the signed part of the PDF to the
end of the document while reusing the xref pointer within the
signed Trailer to an attacker manipulated Xref table. To avoid any
processing of the relocated part, it can be optionally wrapped by
using a stream object or a dictionary. We distinguish two variants
of SWA.
Variant 1: Relocating the second hashed part. Each ByteRange
entry of the Signature object defines two hashed parts of the
document. The first variant of the attack relocates only the second
hashed part. In Figure 9, two documents are depicted. On the left
side, a validly signed PDF file is depicted. The first hashed part
begins at byte offset a and ends at offset a+b, the second hashed
part ranges from offset c until c+d . On the right side, a manipulated
PDF file is generated by using SWA as follows:
Step 1 (optional): The attacker deletes the padded zero bytes within

the Contents parameter to increase the available space for
injecting manipulated objects.1

Step 2: The attacker defines a new /ByteRange [a b c* d] by ma-
nipulating the c value, which now points to the second

1During signing, the size of the signature value (and the corresponding certificate) is
not known and thus it is roughly estimated. The unused bytes are later filled with zero
Bytes.

%PDF-1.7

Original Document

1 0 obj Catalog

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents <324d3…
77000000000000000
000………………….0000
00000000000000000
00000000000000000
00000000000000000
00000000000000>
/ByteRange [a b c d]

Xref Table

Trailer

%%EOF

%PDF-1.7

Original Document

1 0 obj Catalog

5 0 obj Signature

/Subfilter adbe.pkcs7
/Contents <324d3… 77>
/ByteRange [a b c* d]

Xref Table

Trailer

666 0 obj stream

stream
/ByteRange [x y z w]

%%EOF
endstream

Malicious Objects

Malicious Xref Table

c*

d

a

b

Padding

c

d

a

b

Trailer (optional)

Same
byte offset

Figure 9: A comparison of the original document and the
manipulated document by using the Signature Wrapping
Attack (SWA). Malicious objects are placed before the ma-
licious Xref table table by deleting unused zero bytes in
Contents.

signed part placed on a different position within the docu-
ment.

Step 3: The attacker creates a new Xref table pointing to the new
objects. It is essential that the byte offset of the newly in-
serted Xref table has the same byte offset as the previous
Xref table. The position is not changeable since it is refer-
enced by the signed Trailer . For this purpose, the attacker
can add a padding block (e.g., using whitespaces) before the
new Xref table to fill the unused space.

Step 4: The attacker injects malicious objects which are not pro-
tected by the signature. There are different injection points
for these objects. They can be placed before or after the
malicious Xref table. If Step 1 is not executed, it is only
possible to place them after the malicious Xref table.

Step 5 (optional): Some PDF viewers need a Trailer after the ma-
nipulated Xref table, otherwise they cannot open the PDF
file or detect the manipulation and display a warning mes-
sage. Copying the last Trailer is sufficient to bypass this
limitation.

Step 6: The attacker moves the signed content defined by c and
d at byte offset c*. Optionally, the moved content can be
encapsulated within a stream object.

Noteworthy is the fact that the manipulated PDF file does not
end with %%EOF after the endstream. This was necessary due to
the reason that some validators throw a warning that the file was
manipulated after signing due to an %%EOF after the end of signed
document (byte offset of EOF > c+d). To bypass this requirement, the

PDF file is not correctly closed. However, it will still be processed
by any viewer.

Signed PDF

Header

a

…
/Contents
< … >
/ByteRange [a b c d]
...

Xref Table

Trailer

b

c

d

Variant: 1

Header

a

…
/Contents
< … >
/ByteRange [a b c* d]
>> endobj

Xref Table

Trailer

b

c*

d

 Malicious Body

Xref Table

Trailer (optional)

/ByteRange [a b c d]
...

Variant: 2

Header

…
/Contents
< … >
/ByteRange [0 0 c* d*]
>> endobj

Xref Table

Trailer

c*

d*

Header

…
/Contents
/ByteRange [a b c* d]
>> endobj

 Malicious Body

Xref Table

Trailer

Protected by the signature

Content Manipulation

Variant: 2*

 Header

…
/Contents
< … >
/ByteRange [0 5 c* d*]
>> endobj

Xref Table

Trailer

c*

d*

Header

…
/Contents
/ByteRange [a b c* d]
>> endobj

 Malicious Body

Xref Table

Trailer

%PDF- 1.4b

a

%PDF-

Figure 10: File structures of a signed PDFfile before and after
different Signature Wrapping attacks were applied.

Variant 2: Relocating the both hashed parts. The first variant
of SWAonly relocates the second hashed part. This approach has the
disadvantage that manipulations in the first section are impossible
since the first hash part commonly protects the beginning of the
file (offset a = 0) up to the signature object. The second variant
of SWA relocates both hashed parts by concatenating part 1 and
part 2. The attack algorithm is similar to Variant 1, except for two
differences:

• In Step 2, the attacker changes all original values in /ByteRange

to a∗=0, b∗=0, c∗ and d∗=b+d . In other words, he defines the
first hashed part to begin at byte offset a*=0, having length
b*=0. He then chooses an arbitrary wrapper position c*, and
sets its length (d) to the sum of both hashed parts (b+d).

• In Step 6, the attacker copies the first hashed part (byte
offsets a to a+b) concatenated with the second hashed part
(byte offsets c to c+d) at byte offset c∗.

The algorithm is based on our evaluation result that all tested
viewer applications verified if the first entry of the /Byterange
equals zero. This makes it impossible to move the first hashed part
to an arbitrary position because of a > 0 and leads to a warning.
For this reason, we used the trick to concatenate both hashed parts
to a single unit. By this means, the value of a could remain zero.
Surprisingly, no viewer verified whether b > 0, but even in such
a case, we can apply SWA. A lightly different Variant 2∗ can be
created by using the fact that the beginning of every PDF file starts
with \%PDF- followed by the specified interpreter version, e.g., 1.7.
Therefore, a byte range from byte offsets a=0, . . . ,b=5 can always
be used. A comparison of all SWA variants is depicted in Figure 10.

5 EVALUATION
In this section, we present the results of our evaluation. We applied
various manipulations based on the three presented attack classes
to a validly signed test document. Afterward, we conducted black-
box security tests to evaluate whether native applications or online
validation services in the scope of this paper can be successfully
attacked using our attack classes.

5.1 Applications
In the first phase of our evaluation, we searched for desktop applica-
tions validating digitally signed PDF files. We analyzed the security
of their signature validation process against our three attack classes.

The 22 applications listed in Table 1 fulfill these requirements.We
evaluated the latest versions2 of the applications on all supported
platforms (Windows, MacOS, and Linux).
Results. During our evaluation, we identified vulnerabilities in 21
of the 22 evaluated applications. These vulnerabilities allow us to
bypass the document integrity protection provided by the signature
completely and to manipulate the displayed content of signed PDF
files. There was only one application which could not successfully
be attacked: the last Linux version of Adobe Reader (9.5.5) which
was released in 2013. All other applications could be successfully
attacked using at least one attack vector. The SWA class turned
out to be the most successful. It led to successful attacks on 17
applications, while ISA could be used to successfully attack half of
the evaluated applications and USF succeeded for four applications.

In the following section, we present interesting results as an
example for each attack class. The complete results are depicted in
Table 1.
Universal Signature Forgery.USF attackswere successful against
four applications. However, two of these applications are Adobe
Acrobat Reader DC and Adobe Reader XI. Surprisingly, these two ap-
plications are not vulnerable to any attack we evaluated except the
USF attack. To bypass the protection of the applied digital signature
in Adobe Acrobat Reader DC and Adobe Reader XI an attacker only
needs to remove the /ByteRange entry of the signature object which
specifies the part of the document protected by the signature, or re-
place its value with null.3 Afterwards, he can arbitrarily change the
displayed content of the document. Nevertheless, both applications
showed a blue banner stating that the document is “Signed and all
signatures are valid”. The applications also informed the user in the
signature panel that the document “has not been modified since
the signature was applied” although the manipulated content was
displayed.
Incremental Saving Attack. By using the ISA class, it was possi-
ble to attack 11 of the 22 evaluated applications successfully. For
example, PDF Studio Viewer 2018 and Perfect PDF 10 Premium inform
the user that the document has been changed after the application
of the signature when a regular incremental saving is applied to a
signed document. However, it is sufficient to delete the Xref table
and trailer of the incremental saving and add the keyword startxref
as a comment at the end of the file to create a successful attack for
these applications. When the manipulated document is opened, the
applications display the exchanged content but still inform the user
that the applied signature is valid and the document has not been
changed since it was applied.

We found two even easier bypasses of the document integrity
protection for LibreOffice. Both bypasses are based on Variant 1 of
the ISA class, whose structure is very similar to regular incremental
saving. The manipulated files both contain body updates, a new
Xref table, and a new trailer but differ in the contents of the Xref
2Which were available at the beginning of our evaluation.
3According to the PDF reference v1.7, a dictionary entry whose value is null should
be treated similar to a non present entry [21, p. 63].

PDF Viewer Version OS
PDF Signature Comments

USF ISA SWA

Adobe Acrobat Reader DC 2018.011 Win10,
MacOS ✓ ✓ Error when a visible signature is clicked, for

invisible signatures this is not a problem
Adobe Reader 9 9.5.5 Linux ✓ ✓ ✓

Adobe Reader XI 11.0.10 Win10,
MacOS ✓ ✓ Error when a visible signature is clicked, for

invisible signatures this is not a problem
eXpert PDF 12 Ultimate 12.0.20 Win10 ✓ ✓
Expert PDF Reader 9.0.180 Win10 ✓ ✓

Foxit Reader 9.1.0; 9.2.0
Win10,
Linux,
MacOS

✓ No signature verification on Linux and MacOS
available (latest version 2.4.1)

LibreOffice (Draw)
6.0.6.2;
6.0.3.2,
6.1.0.3

Win10,
Linux,
MacOS

✓ H# ✓ Detects ISA when certificate is trusted

Master PDF Editor 5.1.12/24
Linux,
Win10,
MacOS

✓ ✓ Attack only on Linux and Windows success-
ful. On MacOS the original, not manipulated
signature was already invalid.

Nitro Pro 11.0.3.173 Win10 ✓ H# Detects ISA when certificate is trusted
Nitro Reader 5.5.9.2 Win10 ✓ H# Detects ISA when certificate is trusted
Nuance Power PDF Standard 3.0.0.17 Win10 ✓ ✓
PDF Architect 6 6.0.37 Win10 ✓ ✓

PDF Editor 6 Pro 6.4.2; 6.6.2 Win10,
MacOS H# USF successful on UI-Layer 1;

ISA and SWA only on Windows successful. On
MacOS the original, not manipulated signature
was already invalid.

PDFelement 6 Pro 6.7.1; 6.8.0 Win10,
MacOS H# USF successful on UI-Layer 1;

ISA and SWA only on Windows successful. On
MacOS the original, not manipulated signature
was already invalid

PDF Studio Viewer 2018 2018.0.1
Win10,
Linux,
MacOS

✓

PDF Studio Pro 12.0.7
Win10,
Linux,
MacOS

✓

PDF-XChange Editor 7.0.326 Win10 ✓ ✓
PDF-XChange Viewer 2.5 Win10 ✓ ✓
Perfect PDF 10 Premium 10.0.0.1 Win10 ✓
Perfect PDF Reader 13.0.3 Win10 ✓
Soda PDF Desktop 10.2.09 Win10 ✓ ✓
Soda PDF 9.3.17 Win10 ✓ ✓
Total Successful
Attacks

4/22 11/22 17/22
Summary Signature Vulnerabilities: 21/22

✓: Secure/Attack fails; : Insecure/Attack successful; H#: Limited attack success

Table 1: Evaluation results of 22 PDF Viewer showing critical vulnerabilities in 21 of them.

table. In contrast to regular incremental saving, the Xref table of
the first bypass is empty and only consists of the keyword xref. We
presume that LibreOffice assumes that the incremental saving does
not add new objects due to the empty Xref table. The second bypass
uses an Xref table which does not only contain entries for the body
updates, as would be the case for regular incremental saving, but
also entries for all objects added to the file when the signature was
applied. LibreOffice seems to assume that the signature is part of
this manipulated incremental saving, and therefore informs the
user that the document was not modified after the signature was
applied.
Signature Wrapping Attack. Attacks based on the SWA attack
class were the most successful against the viewer applications. All

but five applications are vulnerable to attacks of this class. It was
even possible to attack 14 applications with a single manipulated
document successfully. This document was created by adding new
objects manipulating the displayed content of the document, a new
Xref table, and a new trailer in between the two signed byte ranges.
Two things are essential for the attack to work: (1) The Xref table
contains entries for all added objects, and objects present in the
second signed byte range. (2) The last trailer of the file, as well as
the newly added one, must reference the correct byte offset of the
new Xref table. The second signature wrapping approach – moving
the signed data to the end of the file – led to another interesting,
however not successful, result. When the different test files, which
were created for this signature wrapping approach and led not to

successful attacks, are opened in eXpert PDF 12 Ultimate, PDF Ar-
chitect 6, Soda PDF Desktop or Soda PDF the application’s signature
panel states that “some modifications have been made in the docu-
ment”. Some of these test files are called “Revision 1” and some are
called “Revision 2” in the signature panel. The application’s behav-
ior when the “View Signed Version” option in the signature panel is
selected differs for these two revisions. For all files called Revision
1, the option opens a new tab showing the original file’s content
(“Hello World!” for our test files). However, for all files called Revi-
sion 2, the opened tab also displays the manipulated content (“Hello
Attacker!”), and the signature panel now states that “after adding
the signature, the document has not been modified”. This implies
to the user that the opened document has been altered after the
signature was applied; nevertheless, the content displayed in the
new tab after clicking on “View Signed Version” is the original file
content. These attacks are not classified as successful because the
attacker model specifies that both UI-layers must not state that the
document was modified after the application of the signature when
the manipulated document is opened.

5.2 Online Validation Services
In the second phase of our evaluation, we focused on online vali-
dation services. These services are used to verify the integrity and
validity of signed PDF documents. Thus, validating the signature of
PDF documents can be automated and outsourced to these services.

One of the most prominent vendors of validation services is
DocuSign. Aside from its online validation service, DocuSign also
offers a cloud PDF viewer and a signing application used by most
companies of the Fortune 500 list. Prominent examples include Dell,
eBay, VISA, Microsoft, Nike, and the USENIX Association [4, 13].

We additionally evaluated services used in different EU countries
(e.g., Austria [38] or Slovenia [10]) to evaluate multiple signatures
types (PAdES, CAdES, and XAdES) for the eIDAS regulation [48].
Test Setup.We evaluated each online validation service as follows.
First, we uploaded a validly signed PDF file (document_signed.pdf)
to the service by using the available upload functionality. The ser-
vice then generates a report containing details regarding the signa-
ture validity status. Another output was not provided in any case,
especially the content of the PDF file is not displayed.

We then modified the signed PDF file using different variants
of all three attack classes successively. If one of these attack vec-
tors results in a report that is indistinguishable from the report
of document_signed.pdf, we classify the attack as successful. An
example of a successful attack is presented in Figure 11.
Results.We analyzed eight free and publicly available validation
services against all three attack classes. The signature validation
could be bypassed on six services (cf. Table 2).

To summarize, two of the analyzed services [9, 38] were vulner-
able to SWA and five services [9, 10, 12, 14, 20] could be bypassed
using the ISA class. This is contrary to the results from the evalua-
tion of viewer applications, where we could find more applications
vulnerable to SWA.

One interesting challenge during the evaluation was to find
a clear indication in the report whether a signature is valid. For
example, the DSS Demonstration WebApp [14] prints out two fields
containing the verification report: Indication and Signature scope, see

Figure 11: Validation report created by the Digital Signing
Service for a manipulated but signed PDF file [14].

Figure 11. The Indication field summarizes the results of the digital
signature validation. In our case, the result is: TOTAL PASSED. With
respect to USF and SWAwe received a warning or a error message if
the attacks are detected. Regarding ISA, the Signature Scope contains
information indicating whether the complete document is signed
or not. In case that the ISA attack is detected, the validation service
should print out that the scope is partial and only parts of the
document are signed. According to our evaluation, version 5.2 of
the DSS Demonstration WebApp is susceptible against ISA since
it returns a Full PDF as Signature scope even if the document was
modified via incremental saving in Variant 2. Along with all EU
validation services, we analyzed DocuSign – one of the worldwide
leading cloud services – was the only service vulnerable against
both attacks ISA and SWA.

6 HOW TO FIX PDF SIGNATURES
In this section, we propose concrete countermeasures to fix the
previously introduced attacks. We,therefore, carefully studied the
main reasons for the attacks on PDF signatures and were able to
identify two root causes: (1) The specification does not provide
any information with a concrete procedure on how to validate
signatures. There is no description of pitfalls and any security
considerations. Thus, developers must implement the validation
on their own without best-common-practice information. (2) The
error tolerance of the PDF viewer is abused to create non-valid
documents bypassing the validation, yet is correctly displayed to
the user.
The Verification Algorithm. When considering a proper coun-
termeasure, we defined an algorithm which addresses USF, ISA,
and SWA but does not negatively affect the error tolerance of the
PDF viewers (cf. Listing 2). It describes a concrete approach on
how to compute the values necessary for the verification and how
to detect manipulations after the PDF file was signed. The speci-
fied algorithm must be applied for each signature within the PDF
document.

Signature Validation Service Version PDF Signature Comments
USF ISA SWA

DocuSign [9]
v1 REST API with

PDFKit.NET
18.3.200.9768

✓

eRTR Validation Service [38] v 2.0.3 ✓
DSS Demonstration WebApp [14] WebApp 5.2 ✓ ✓
DSS Demonstration WebApp [7] WebApp 5.3.1 ✓ ✓ ✓
Evrotrust (free) [12] 12.0.20 ✓ ✓

Ellis [20] version 0.9.1, build
1526594400 ✓ ✓

VEP.si [10] 2017-06-26 ✓ ✓
SiVa Sample Application [11] release-2.0.1 – – – Could not be evaluated since valid documents

were shown invalid due to PKI issues

Total Successful Attacks 0/8 5/8 2/8
Summary Signature Vulnerabilities: 6/8

✓: Secure/Attack fails; : Insecure/Attack successful; H#: Limited attack success

Table 2: Evaluation results of eight online signature validation services showing six of them vulnerable.

As an input, it requires the PDF file as a byte stream and the
signature object.

1 INPUT: PDFBytes, SigObj
2
3 // ByteRange is mandatory and must be well−formated
4 byteRange = SigObj.getByteRange
5 // Preventing USF:
6 if (byteRange == null OR byteRange.isEmpty) return false
7 // Parse byteRange
8 if (byteRange.length,4) return false
9 for each x in byteRange { if x , instanceof(int) return false}
10 a, b, c, d = byteRange
11 // BytRange must cover start of file
12 if (a , 0) return false;
13 // Ensure that more than zero bytes are protected in hashpart1
14 if (b ≤ 0) return false
15 // Ensure that sencond hashpart starts after first hashpart
16 if (c ≤ b) return false
17 // Ensure that more than zero bytes are protected in hashpart2
18 if (d ≤ 0) return false
19 // Preventing ISA. ByteRange must cover the entire file.
20 if ((c + d) , PDFBytes .lenдth) return false;
21 // The pkcs7 blob starts at byte offset (a+b) and goes to offset c
22 pkcs7Blob = PDFBytes[(a+b):c]
23 // Preventing USF. Pkcs7Blob value is not allowed to be null or empty.
24 if (pkcs7Blob == null OR pkcs7Blob.isEmpty) return false
25 // pkcs7Blob must be a hexadecimal string [0−9,a−f,A−F]
26 if (pkcs7Blob contains other chars than [0−9,a−f,A−F]) return false
27 // Parse the PKCS#7 Blob
28 sig, cert = pkcs7.parse(pkcs7Blob)
29 // Select (a+b) bytes from input PDF begining at byte a=0, i.e. 0 ... a+b−1
30 hashpart1=PDFBytes[a:(a+b)]
31 // Select (c+d) bytes from input PDF begining at byte c, i.e. c ... c+d−1
32 hashpart2=PDFBytes[c:(c+d)]
33 // Verify signature
34 return pkcs7.verify(sig, cert, hashpart1 ||hashpart2)

Listing 2: Pseudo-code preventing USF, ISA and SWA.

In Line 4, we first extract the ByteRange from the signature
object. To prevent USF, we ensure that ByteRange is not null or
empty in Line 7.

Lines 9-22 then validate the values a,b, c, andd of the ByteRange.
First, Line 10 ensures that it contains exactly four values tominimize
an attacker’s attack surface. Line 11 additionally ensures that each
ByteRange value is an integer. Lines 14 to 20 ensure that ByteRange
satisfies the following condition: 0=a < b < c < (c+d), which is
equivalent to a=0 and b > 0 and c > b and d > 0. Enforcing this
condition ensures that the signature always covers the beginning of
the file (a = 0), prevents signed blocks of length zero (b > 0, d > 0),
and ensures that both signed blocks are non-overlapping (c > b).

Finally, we verify that ByteRange covers the entire file (Line 22) in
order to detect ISA. Lines 24-29 parse the Contents parameter of
the signature object, which is a PKCS#7 blob.

The critical aspect is that we interpret everything that is not
covered by the ByteRange as the Contents parameter of the PDF
signature. Theoretically, the check in Line 27 should never fail,
because we previously verified (a+b)=b and b < c . Thus it holds
that pkcs7Blob.length > 0. Nevertheless, we leave this line here
due to its importance for preventing SWA. Line 29 additionally
ensures that only hex characters can be in the unprotected part of
the PDF file, preventing further unwanted modifications of the file.

Lines 31-32 parse the PKCS#7 blob and extract the information
to be used for the signature verification. Lines 34-38 determine the
bytes of the input PDF that are signed.

Finally, Line 41 calls the PKCS#7 verification function and returns
the validity status of the signature.
Drawback. Specifying the algorithm in Listing 2 requires a change
in the PDF specification which defines ByteRange as an optional
parameter [21, Section 8.7]. In this case, the signature value will
be computed only over the signature dictionary leaving the en-
tire document unprotected. Such a feature allows an even more
powerful attack since the attacker can create validly signed docu-
ments by only injecting the signed signature dictionary without
a /ByteRange. Currently, none of the evaluated viewers supports
this feature.

Additionally, the algorithm leads to one usability issue if multiple
signatures are provided. Although these signatures are valid, only
the one covering the entire document will be displayed as valid.
This problem can be addressed by providing additional information
to the user that some of the signatures are valid but cover only a
specific revision and not the entire document. Adobe uses a similar
approach for the signature validation. All Adobe viewers show
information about the document revision protected by a signature
and allow only to open this revision. Thus, a user can easily verify
which information is signed and which is not.
Responsible Disclosure. After discovering the vulnerabilities we
created a security report containing the description of the attacks,
a list with the affected implementations, a proof-of-concept exploit

for each successful attack vector, and the pseudo-code preventing
the attacks [34]. On the 8th of November, we sent the report to
the BSI-CERT team who distributed it to all affected vendors and
governmental organizations dealing with PDF [34]. During the
responsible disclosure process, we supported BSI-CERT and the
vendors to fix the issues. The complete information relating to our
research on PDF signatures was published February 25, 2019 on
https://www.pdf-insecurity.org/. To support all vendors, we also
published all available exploits. Some vendors already integrated
these files in their test environments.

7 RELATEDWORK
At the beginning of our research phase, we gathered and studied
the existing related work to PDF and file format security. This work
can be separated into the following four categories.
PDFMalware and PDFMasking. In 2010, Raynal et al. provided a
comprehensive study onmalicious PDFs abusing legitimate features
in PDFs leading to Denial-of-Service (DoS), Server-Side-Request-
Forgery (SSRF), and information leakage [37]. Additionally, the
authors considered potential security issues regarding the signa-
ture verification by criticizing the design of the certificate trust
establishment. In 2012, Hamon et al. published a study revealing
weaknesses in PDFs leading to malicious URI invocation [49]. In
2013 and 2014, multiple vulnerabilities in Adobe Reader were re-
ported abusing the support of insecure PDF features, JavaScript,
and XML [22, 40]. Inführ [23] published a summary of the sup-
ported languages, file formats and features in PDFs leading to these
security issues. In 2018, Franken et al. evaluated the security of
third-party cookies policies [16]. Part of the evaluation revealed
weaknesses in two PDF reader by forcing them to call arbitrary
URIs. In the same year, multiple vulnerabilities in Adobe Reader
and different Microsoft products were discovered leading to URI
invocation and NTLM credentials leakage [24, 39].

Besides PDF malware, research has been provided on content
masking. In 2014, Albertini discovered new attack classes by com-
bining a PDF and a JPEG into a single polyglot file [2]. In 2017,
Markwood et al. introduced a novel attack related to content mask-
ing by using font encoding [31].
PDF Malware Detection. As a result of the discovered attacks
during the recent years, different security tools were implemented
detecting maliciously crafted documents [8, 26, 28, 30, 41, 43]. Such
tools rely on the detection of known attack patterns and structural
analysis of PDFs.

In 2016, Carmony et al. build a JavaScript reference extractor
for detecting parsing confusion attacks [6]. In 2017, Tong et al.
introduced a concept for a robust PDF malware detection based
on machine learning algorithms [46]. In the same year, Tong et al.
published a framework based on these algorithms and capable of
detecting PDF malware [47]. Maiorca et al. provided an overview
of the current PDF malware techniques and analyzed the existing
security tools by comparing them [29]. This paper mentions the
Incremental Saving (IS) feature for the first time in conjunction
with attacks, but up until our research, the feature has not been
combined with attacks on PDF signatures.

PDF Signatures. While studying the related work, we discovered
a gap in existing security analysis. We were able to find only a few
articles directly related to the security of PDF signatures.

In 2008 and 2012, Grigg et al. described the risks associated to
electronic signatures [18, 19] based on the missing cryptographic
signature allowing an attacker to forge any signature.

In 2012, Popescu et al. presented a proof-of-concept bypass for a
specific digital signature [36]. The attack is based on a polymorphic
file containing two different files – a PDF and TIFF. The risk ex-
ists if a victim signs the document unaware of the hidden content
inside the file. In 2015, Lax et al. documented potential security
topics related to digitally signed documents [27]. The authors con-
centrated on issues related to the signature generation process
like malware, signed documents containing dynamic content like
macros or JavaScript, and polymorphic documents similar to [36].
In 2017, Stevens et al. discovered an attack against SHA-1 [45] break-
ing the collision resistance. For the proof-of-concept, the authors
created two different PDF files containing the same digest value.
As a result, an attacker could create a PDF file with new content
without invaliding the digital signature. In his master thesis, Stefan
et al. provided an in-depth analysis of PDF signatures [44]. The au-
thor also implemented a library verifying PDF signatures. However,
the security considerations addressed only known attacks related
to PDFs and none of our discovered attack classes.
Signature Bypasses in different Data Structures. In 2002 Kain
et al. addressed possible threats related to digitally signed docu-
ments like MS Word, MS Excel, or PDFs resulting from PKI issues,
dynamic content loaded from a website, and code execution by
supported programming languages within documents [25]. In the
paper, the authors briefly describe the possibility to create an un-
signed PDF document which is visually identical to the signed one,
but they do not deliver any proof-of-concept exploit and do not
evaluate if and how this can be achieved. In 2005, Buccafurri et al.
describe a file format attack where the attacker forces two different
views of the same signed document which contains an image as BMP
and HTML code [5]. Depending on the file extension, the content of
the image or the HTML code is processed. PDF files are mentioned
as a possible target for such an attacker, but no concrete ideas are
described.

The general concept of SWA – the relocation of the hashed part
of a document – has been applied to XML-based messages before.
In 2005, McIntosh and Austel described an XML rewriting attack
on SOAP web services [32] and was adapted to SAML-based Single
Sign-On in 2012 [42]. However, the adaption to PDF is much more
complicated because the hashed part of the file is located using a
byte range instead of an object identification number and has not
been found in any previous work.

Attacks that exclude a document’s signature have been applied
to SAML [42] and JSON [33]. In contrast to our USF attack, these
vulnerabilities simply remove the signature of the document in
order to bypass the validation logic. This would work identically
for PDFs, but a victim expects to open a signed file, and he will
become suspicious if no signature information is shown once he
opens the document. Thus, USF is a more advanced variant of
signature exclusion adapted to PDF.

https://www.pdf-insecurity.org/

8 NEW RESEARCH DIRECTIONS
In this paper, we provide the first step into the security analysis of
PDF signatures. We discovered further potential targets for attacks
opening new research directions and challenges.
PKCS-basedAttacks.The signature value is either a DER-encoded
PKCS#1 binary data object or a DER-encoded PKCS#7 binary data
object. Considering the complexity of both formats, the question
arises if the verification of the PKCS object is correctly implemented.
The goal of PKCS-based attacks is the creation of an always valid
object. The impact of such an attack would be equal to the impact of
USF, whereby any modification of the signed document is possible.

Additionally, the PKCS object contains the certificates used dur-
ing the verification. If untrusted certificates are used, security warn-
ings are displayed to the user. Thus, an attacker is not able to create
a validly signed and trusted document. Future research should con-
centrate on the certificate validation by targeting this step and
forcing the validation to accept an untrusted certificate.
TransformationMethod Attacks. The PDF specification defines
three different transformation methods applied on the document
before signing it: DocMDP, UR, and FieldMDP. The transformation
methods define which objects are included and excluded in the com-
putation of the digital signatures. In this paper, we focused on the
DocMDP transformation which is the short term for modification,
detection, and prevention and permits changes by filling in forms,
instantiating page templates and signing. Any other modification
invalidates the signature.

DocMDP allows further adjustments regarding permitted and
forbidden changes depending on different parameters. Future re-
search should investigate if such restrictions are correctly applied
and if they can be bypassed. Additionally, the transformation meth-
ods UR, protecting the defined usage rights, and FieldMDP detects
changes in contained form fields should be also analyzed. Since
these transformation methods process the data which should be
signed differently thanDocMDP, an in-depth security analysis could
discover further vulnerabilities.
PDF Advanced Electronic Signatures. Motivated by the idea of
eGovernment, the European Union published the PDF Advanced
Electronic Signatures (PAdES) specification, which extends the PDF
signature specification. For the significance of sensitive documents
exchanged within governmental services, it is essential to analyze
the current specification and the existing implementations.

In our evaluation, we discovered vulnerabilities in online valida-
tion services by adapting our attack vectors on PAdES documents.
Since our attacks abuse features in the PDF specification, it is not
surprising that PAdES signatures are also affected. It is essential
that future research analyzes the PAdES specification carefully and
evaluates the security of the specification itself. In this paper, we
did not provide such an analysis.
Content Masking. Markwood et al. introduced techniques to by-
pass topicmatching algorithms, plagiarism detection, and document
indexing [31] by creating malicious fonts and constructing new
word and character maps to mask the malicious content. In the con-
text of signed PDFs, content masking attacks abuse dissimilarities
between the signed and displayed content. For example, by defining

new fonts and thus changing the presentation of some characters,
the IBAN in an invoice document can be changed.

Another attack idea is to abuse the error tolerance of the viewer.
During our tests, we detected presentation differences of the same
document by using different viewers. The error-tolerance can be
abused by an attacker validly signing one document, for example, a
contract and distributing it to multiple parties. If these use different
viewers, they may accept different contracts.
Verification UI Forgery. Similar to content masking attacks, an
attacker can try to create a UI forging the view of a signed docu-
ment. The PDF specification supports multiple interactive forms
like button fields, rich text string, and form actions. Such features
facilitate the creation of a UI imitating a signature panel where the
results of the signature validation are usually displayed. As a re-
sult, an attacker could create a malicious document which appears
trustworthy after opening. These kinds of attacks have already
been described in the web context by Zalewski [54]. Researchers
should concentrate on features defined in Section 12 in the PDF
specification [21].

9 CONCLUSION
The PDF specification is a very complex standard. Unfortunately,
when it comes to cryptography and, as in our case to digital signa-
tures, it lacks concrete implementation guidelines and documents
describing the best current practices. Our investigation reveals
that almost all desktop applications fail to validate PDF signatures
correctly. We identified three main reasons for this: (1) The specifi-
cation itself does not enforce a strict policy, e.g., it does not enforce
a signature to cover the whole document. This could be abused
by SWA and relocating the signed content to a different position.
(2) PDF applications are error tolerant and process the content of
a PDF file even if it is not standard compliant. We heavily abused
this behavior with ISA and created non-standard compliant doc-
uments that force a viewer application to believe that it has not
been updated; however, an attacker could manipulate the document.
(3) Even if the above aspects are correctly handled, as in the case
of Adobe, there can be mere programming mistakes that break the
whole cryptography. In the case of USF, an unexpected missing of
mandatory information leads to a valid signature.

Our evaluation of PDF viewer applications and online valida-
tion services has alarming results. In 95% of all analyzed viewer
applications, at least one of the problems, which were identified
above, occurs and allows an attacker to stealthy manipulate con-
tents of a signed PDF file. Analogous results could be found for
online validation services in 75% of the tested cases. We responsibly
disclosed our findings via the BSI-CERT to all vendors and proposed
a validation algorithm to prevent our attacks.

Concerning the digitalization of offices and eGovernment, we
see a strong need for the improvement of the given specification
and best practices. PDF security related to cryptographic features
have been overlooked for too long. We, therefore, pointed out new
research directions in the field of PDF security in order to address
this issue.

10 ACKNOWLEDGEMENTS
We would like to thanks the CERT-Bund team for their great sup-
port during the responsible disclosure process. The research was
supported by the European Commission through the FutureTrust
project (grant 700542-Future-Trust-H2020-DS-2015-1). Funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972.

REFERENCES
[1] Adobe. 2018. Adobe Fast Facts. https://www.adobe.com/about-adobe/fast-facts.

html
[2] Ange Albertini. 2014. This PDF is a JPEG; or, This Proof of Concept is a Picture

of Cats. PoC 11 GTFO 0x03 (2014). https://www.alchemistowl.org/pocorgtfo/
pocorgtfo03.pdf

[3] PDF association. 2018. PDF in 2016: Broader, deeper, richer. https://www.pdfa.
org/pdf-in-2016-broader-deeper-richer/

[4] USENIX Association. 2018. Board of Directors Out of Band Motion. https://www.
usenix.org/sites/default/files/2017-01_out-of-band_motion_signed.pdf

[5] Francesco Buccafurri. 2005. Digital Signature Trust vulnerability: A new attack
on digital signatures. Information Management & Computer Security 4 (2005),
28–6. http://www.unirc.it/firma/en/Buccafurri_ISSA_1008.pdf

[6] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and Mu
Zhang. 2016. Extract Me If You Can: Abusing PDF Parsers in Malware Detectors..
In NDSS.

[7] European Commission. 2018. DSS Demonstration WebApp v5.3.1. https://ec.
europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS

[8] Igino Corona, Davide Maiorca, Davide Ariu, and Giorgio Giacinto. 2014. Lux0r:
Detection of malicious pdf-embedded javascript code through discriminant anal-
ysis of api references. In Proceedings of the 2014 Workshop on Artificial Intelligent
and Security Workshop. ACM, 47–57.

[9] Inc. DocuSign. 2018. DocuSign Validation Service. https://validator.docusign.com/
[10] EIUS doo. 2018. VEP E-obrazci. https://www.vep.si/validator/forms/document-

verify
[11] eesti. 2018. SiVa Demo application. https://siva-arendus.eesti.ee/
[12] Evrotrust. 2018. Validate a signature. https://www.evrotrust.com/landing/en/a/

validation
[13] FeaturedCustomers. 2018. DocuSign Customer. https://www.featuredcustomers.

com/vendor/docusign/customers
[14] Agency for Digital Italy. 2018. DSS Demonstration WebApp v5.2. https://dss.agid.

gov.it/validation
[15] Forbes. 2018. Forbes Releases 2017 Cloud 100 List of the Best Private Cloud Compa-

nies in the World. http://bit.ly/dokusign-forbesrank
[16] Gertjan Franken, Tom Van Goethem, and Wouter Joosen. 2018. Who Left Open

the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie Policies.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 151–168. https://www.usenix.org/conference/usenixsecurity18/
presentation/franken

[17] Bundesministerium für Digitalisierung und Wirtschaftsstandort. 2019. E-
Government-Gesetz (E-GovG). https://www.ris.bka.gv.at/GeltendeFassung/
Bundesnormen/20003230/E-GovG%2c%20Fassung%20vom%2004.02.2019.pdf

[18] Ian Grigg. 2008. Technologists on signatures: looking in the wrong place. http:
//financialcryptography.com/mt/archives/001056.html

[19] Ian Grigg. 2012. Signatures on fax & email - if you did not intend to be bound,
why did you bother to write it? http://financialcryptography.com/mt/archives/
001364.html

[20] Arhs Group. 2018. Ellis Digital Signature. https://ellis.arhs-spikeseed.com/
[21] Adobe Systems Incorporated. 2006. PDF Reference, version 1.7 (sixth edition ed.).
[22] Alexander1 Inführ. 2014. Multiple PDF Vulnerabilities – Text and Pictures on

Steroids. https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-
text-and.html

[23] Alexander Inführ. 2015. PDF – Mess with the Web. https://2015.appsec.eu/wp-
content/uploads/2015/09/owasp-appseceu2015-infuhr.pdf

[24] Alexander2 Inführ. 2018. Adobe Reader PDF - Client Side Request Injection. https:
//insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html

[25] K Kain, Sean W Smith, and R Asokan. 2002. Digital signatures and electronic
documents: A cautionary tale. In Advanced communications and multimedia
security. Springer, 293–307. http://www.ists.dartmouth.edu/library/74.pdf

[26] Pavel Laskov and Nedim Šrndić. 2011. Static detection of malicious JavaScript-
bearing PDF documents. In Proceedings of the 27th annual computer security
applications conference. ACM, 373–382.

[27] Gianluca Lax, Francesco Buccafurri, and Gianluca Caminiti. 2015. Digital doc-
ument signing: Vulnerabilities and solutions. Information Security Journal: A

Global Perspective 24, 1-3 (2015), 1–14.
[28] Davide Maiorca, Davide Ariu, Igino Corona, and Giorgio Giacinto. 2015. A struc-

tural and content-based approach for a precise and robust detection of malicious
pdf files. In 2015 International Conference on Information Systems Security and
Privacy (ICISSP). IEEE, 27–36.

[29] Davide Maiorca and Battista Biggio. In Press. Digital Investigation of PDF Files:
Unveiling Traces of Embedded Malware. IEEE Security and Privacy: Special Issue
on Digital Forensics (In Press). https://pralab.diee.unica.it/sites/default/files/
maiorca17-sp.pdf

[30] Davide Maiorca, Giorgio Giacinto, and Igino Corona. 2012. A pattern recognition
system for malicious pdf files detection. In International Workshop on Machine
Learning and Data Mining in Pattern Recognition. Springer, 510–524.

[31] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. 2017. PDF Mirage: Content
Masking Attack Against Information-Based Online Services. In 26th USENIX
Security Symposium (USENIX Security 17), (Vancouver, BC). 833–847.

[32] Michael McIntosh and Paula Austel. 2005. XML signature element wrapping
attacks and countermeasures. In SWS ’05: Proceedings of the 2005 Workshop on
Secure Web Services. ACM Press, New York, NY, USA, 20–27.

[33] TimMcLean. 2015. Blog post: Critical vulnerabilities in JSONWeb Token libraries.
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html

[34] Vladislav Mladenov, Christian Mainka, Meyer zu Selhausen, Martin Grothe,
and Jörg Schwenk. 2018. Vulnerability Report: Attacks bypassing the signature
validation in PDF. Technical Report. Ruhr Univeristy Bochum, Chair for Network
and Data Security. https://www.nds.ruhr-uni-bochum.de/research/publications/
vulnerability-report-attacks-bypassing-signature-v/

[35] United States Government Printing Office. 2000. ELECTRONIC SIGNATURES
IN GLOBAL AND NATIONAL COMMERCE ACT. https://www.govinfo.gov/
content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf

[36] Dan-Sabin Popescu. 2012. Hiding Malicious Content in PDF Documents. CoRR
abs/1201.0397 (2012). arXiv:1201.0397 http://arxiv.org/abs/1201.0397

[37] F. Raynal, G. Delugré, and D. Aumaitre. 2010. Malicious Origami in PDF. Journal
in Computer Virology 6, 4 (2010), 289–315. http://esec-lab.sogeti.com/static/
publications/08-pacsec-maliciouspdf.pdf

[38] RUNDFUNK UND TELEKOM REGULIERUNGS-GMBH. 2018. RTR - Signatur-
Prüfung. https://www.signatur.rtr.at/de/vd/Pruefung.html

[39] Check Point Research. 2018. NTLM Credentials Theft via PDF Files. https:
//research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/

[40] Billy Rios, Federico Lanusse, and Mauro Gentile. 2013. Adobe Reader Same-
Origin Policy Bypass. http://www.sneaked.net/adobe-reader-same-origin-
policy-bypass

[41] Charles Smutz and Angelos Stavrou. 2012. Malicious PDF detection using meta-
data and structural features. In Proceedings of the 28th annual computer security
applications conference. ACM, 239–248.

[42] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kampmann, and Meiko
Jensen. 2012. On Breaking SAML: Be Whoever You Want to Be. In 21st USENIX
Security Symposium. Bellevue, WA.

[43] Nedim Šrndić and Pavel Laskov. 2016. Hidost: a static machine-learning-based
detector of malicious files. EURASIP Journal on Information Security 2016, 1
(2016), 22.

[44] Tomáš Stefan. 2017. Digital Signature Verification in PDF. https:
//dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-
thesis.pdf?sequence=-1

[45] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The first collision for full SHA-1. In Annual International Cryptology
Conference. Springer, 570–596.

[46] Liang Tong, Bo Li, Chen Hajaj, and Yevgeniy Vorobeychik. 2017. Fea-
ture Conservation in Adversarial Classifier Evasion: A Case Study.
CoRR abs/1708.08327 (2017). https://pdfs.semanticscholar.org/f1f8/
6dbd8b39c9601e6315214783343ca18377b4.pdf

[47] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, and Yevgeniy Vorobeychik. 2017.
A Framework for Validating Models of Evasion Attacks on Machine Learning,
with Application to PDF Malware Detection. arXiv preprint arXiv:1708.08327
(2017). https://arxiv.org/pdf/1708.08327.pdf

[48] European Union. 2014. REGULATION (EU) No 910/2014 OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL on electronic identification and trust
services for electronic transactions in the internal market and repealing Directive
1999/93/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32014R0910

[49] H. Valentin. 2012. Malicious URI resolving in PDF Documents. Blackhat Abu
Dhabi (2012).

[50] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe and Jörg Schwenk",. 2018. CVE-2018-16042 (Universal Signature Forgery).

[51] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe and Jörg Schwenk",. 2018. CVE-2018-18688 (Incremental Saving Attack).

[52] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen, Martin
Grothe and Jörg Schwenk",. 2018. CVE-2018-18689 (Signature Wrapping Attack).

[53] Wikipedia. 2019. Electronic signatures and law. https://en.wikipedia.org/wiki/
Electronic_signatures_and_law

https://www.adobe.com/about-adobe/fast-facts.html
https://www.adobe.com/about-adobe/fast-facts.html
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.pdfa.org/pdf-in-2016-broader-deeper-richer/
https://www.pdfa.org/pdf-in-2016-broader-deeper-richer/
https://www.usenix.org/sites/default/files/2017-01_out-of-band_motion_signed.pdf
https://www.usenix.org/sites/default/files/2017-01_out-of-band_motion_signed.pdf
http://www.unirc.it/firma/en/Buccafurri_ISSA_1008.pdf
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS
https://validator.docusign.com/
https://www.vep.si/validator/forms/document-verify
https://www.vep.si/validator/forms/document-verify
https://siva-arendus.eesti.ee/
https://www.evrotrust.com/landing/en/a/validation
https://www.evrotrust.com/landing/en/a/validation
https://www.featuredcustomers.com/vendor/docusign/customers
https://www.featuredcustomers.com/vendor/docusign/customers
https://dss.agid.gov.it/validation
https://dss.agid.gov.it/validation
http://bit.ly/dokusign-forbesrank
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20003230/E-GovG%2c%20Fassung%20vom%2004.02.2019.pdf
https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20003230/E-GovG%2c%20Fassung%20vom%2004.02.2019.pdf
http://financialcryptography.com/mt/archives/001056.html
http://financialcryptography.com/mt/archives/001056.html
http://financialcryptography.com/mt/archives/001364.html
http://financialcryptography.com/mt/archives/001364.html
https://ellis.arhs-spikeseed.com/
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html
https://2015.appsec.eu/wp-content/uploads/2015/09/owasp-appseceu2015-infuhr.pdf
https://2015.appsec.eu/wp-content/uploads/2015/09/owasp-appseceu2015-infuhr.pdf
https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
http://www.ists.dartmouth.edu/library/74.pdf
https://pralab.diee.unica.it/sites/default/files/maiorca17-sp.pdf
https://pralab.diee.unica.it/sites/default/files/maiorca17-sp.pdf
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.nds.ruhr-uni-bochum.de/research/publications/vulnerability-report-attacks-bypassing-signature-v/
https://www.nds.ruhr-uni-bochum.de/research/publications/vulnerability-report-attacks-bypassing-signature-v/
https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
http://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
https://www.signatur.rtr.at/de/vd/Pruefung.html
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
https://dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-thesis.pdf?sequence=-1
https://dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-thesis.pdf?sequence=-1
https://dspace.cvut.cz/bitstream/handle/10467/76810/F8-BP-2018-Stefan-Tomas-thesis.pdf?sequence=-1
https://pdfs.semanticscholar.org/f1f8/6dbd8b39c9601e6315214783343ca18377b4.pdf
https://pdfs.semanticscholar.org/f1f8/6dbd8b39c9601e6315214783343ca18377b4.pdf
https://arxiv.org/pdf/1708.08327.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://en.wikipedia.org/wiki/Electronic_signatures_and_law
https://en.wikipedia.org/wiki/Electronic_signatures_and_law

[54] Michal Zalewski. 2012. The tangled Web: A guide to securing modern web applica-
tions. No Starch Press.

	Abstract
	1 Introduction
	2 PDF Basics
	2.1 Portable Document Format(PDF)
	2.2 Creating a PDF Signatures
	2.3 Verifying a signed PDF File

	3 Attacker Model
	4 How To Break PDF Signatures
	4.1 Universal Signature Forgery(USF)
	4.2 isa
	4.3 Signature Wrapping Attack(SWA)

	5 Evaluation
	5.1 Applications
	5.2 Online Validation Services

	6 How to fix PDF Signatures
	7 Related Work
	8 New Research Directions
	9 Conclusion
	10 Acknowledgements
	References

