
Shadow Attacks:
Hiding and Replacing Content in Signed PDFs

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Vladislav Mladenov
Ruhr University Bochum

vladislav.mladenov@rub.de

Simon Rohlmann
Ruhr University Bochum
simon.rohlmann@rub.de

Abstract—Digitally signed PDFs are used in contracts and
invoices to guarantee the authenticity and integrity of their
content. A user opening a signed PDF expects to see a warning
in case of any modification. In 2019, Mladenov et al. revealed
various parsing vulnerabilities in PDF viewer implementations.
They showed attacks that could modify PDF documents without
invalidating the signature. As a consequence, affected vendors
of PDF viewers implemented countermeasures preventing all
attacks.

This paper introduces a novel class of attacks, which we
call shadow attacks. The shadow attacks circumvent all existing
countermeasures and break the integrity protection of digitally
signed PDFs. Compared to previous attacks, the shadow attacks
do not abuse implementation issues in a PDF viewer. In contrast,
shadow attacks use the enormous flexibility provided by the
PDF specification so that shadow documents remain standard-
compliant. Since shadow attacks abuse only legitimate features,
they are hard to mitigate.

Our results reveal that 16 (including Adobe Acrobat and
Foxit Reader) of the 29 PDF viewers tested were vulnerable
to shadow attacks. We introduce our tool PDF-Attacker which
can automatically generate shadow attacks. In addition, we
implemented PDF-Detector to prevent shadow documents from
being signed or forensically detect exploits after being applied to
signed PDFs.

I. INTRODUCTION

Digital signatures can protect Portable Document Formats
(PDFs) against manipulations. This feature enables use cases
such as signing contracts, agreements, payments, and invoices.
Regulations like the eSign Act in the USA [1] or the eIDAS
regulation in Europe [2] facilitate the acceptance of digitally
signed documents by companies and governments. Asian and
South American countries also accept digitally signed doc-
uments equivalent to manually signed paper documents [3].
Adobe Cloud, a leading online service for signing PDF doc-
uments, provided 8 billion electronic and digital signature
transactions in 2019 [4]. In the same year, DocuSign processed
15 million documents each day [5].

a) Signed PDFs prepared by single entities: One typ-
ical use case of PDF signatures is that one in which a single
entity creates both the PDF document and the signature.

Figure 1. A shadow PDF document presents a trustworthy content to the
signers (top document). After signing this document, the attackers modify the
document and enforce another view of the document on victims’ side without
invalidating the signature (bottom document).

Invoices created by Amazon are a popular example of this
scenario.

b) Signed PDFs created by multiple entities: Another
typical use case is the signing of a contract. For example,
this is the case for EU grant agreements, where the European
Research Agency and the grant recipients have to sign a PDF
document. We can describe the generic process of digitally
signing a contract as follows: The collaborators first prepare
the PDF contract. Collaborators can be lawyers, designers, or
members of different companies. Once they have they finalized
the PDF document, the involved parties then digitally sign the
contract. The parties sign the PDF sequentially, and the PDF
may be exchanged multiple times between the parties.

c) Security of PDF Signatures: In 2019, a comprehen-
sive analysis of the security of digitally signed PDFs revealed
severe flaws in multiple applications and found almost all of
them to be vulnerable [6]. They used an attacker model in
which the attacker possesses a PDF that has been digitally
signed by a third party and manipulates it after the signature
had been added to the document. The vendors have fixed these
issues in their recent PDF viewer versions.

In this paper, we investigate the security of these patched
versions of PDF viewers. We extend the attacker model

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24117
www.ndss-symposium.org

from Mladenov et al. [6] and assume the attacker can place
content of his own choice into the PDF file before it is signed.
This assumption is based on real-world usage of signed PDFs
by multiple entities. For instance, the attackers1 may prepare a
PDF document containing seemingly harmless content. They
proceed by replacing this content after the document has
been signed, see Figure 1. We answer the following research
question:

Can the visible content of a digitally signed PDF be
altered without invalidating a signature if attackers
manipulate the PDF before it is signed?

d) Shadow Attacks: In the analog world, a signer typi-
cally adds a handwritten signature at the end of the document.
This addition at the end has two major downsides: 1) it is
possible to exchange all pages before the signed page with
arbitrary content. 2) Attackers could use empty spaces on
signed pages to print new content, or they could overpaint
existing content. These manipulations are impossible when
using digital signatures because this type of signature protects
the entire content. So it is assumed that transferring such an
attack from the analog world to digital signatures is impossible.

This paper shows that this assumption is false by introduc-
ing a new attack class: shadow attacks. The idea of shadow
attacks is that the attackers create a PDF document with
two different contents: 1) content expected by the authority
reviewing and signing the PDF and 2) hidden content that
attackers can reveal after the PDF is signed. In Figure 1,
an overview of the attack is shown. The attackers prepare a
shadow document. In the analog world, this is the step in which
the attackers could explicitly leave empty spaces. The Signers
of the PDF receive the document, review it, and sign it. The
attackers use the signed document, modify it, and send it to
the victims. In the analog world, the attackers can print their
content on the prepared empty spaces. After opening the signed
PDF, the victims’ PDF viewer successfully verifies the digital
signature. However, the victims see different content than the
Signers. We introduce three variants of the shadow attacks,
which allow attackers to hide, replace, and hide-and-replace
content in digitally signed PDFs. The shadow attacks do not
rely on a dynamic content replacement. For example, we do
not use JavaScript or content loaded from external resources
that can be modified after signing the PDF. We consider such
attacks trivial, and according to our observations, all viewers
already prevent such attacks by warning the user.

e) Automatic Generation and Prevention: To contribute
to future research, we present two tools: PDF-Attacker and
PDF-Detector. Both tools are written in Python, and published
as open source on https://pdf-insecurity.org. PDF-Attacker
automatically generates a shadow document by using arbitrary
files as an input. After the document is signed, PDF-Attacker
executes the manipulation steps automatically and stores the
manipulated file. PDF-Detector detects shadow attacks at both
stages of their execution: before the file is signed and after the
final manipulations. Thus, PDF readers can use PDF-Detector
to refuse signing shadow documents and thus prevent harm.
To facilitate the forensic analysis of signed PDF files, PDF-

1In this paper, we use the gender-neutral pronoun they for the following
entities: victim, attacker, signer, and user.

Detector can also analyze signed files and detect manipulations
made afterwards.

f) Shadow Attack vs. Previous Attacks: On an abstract
level, the shadow attacks resemble the idea of Incremental
Saving Attacks (ISAs) [6]. Both attacks allow the manipulation
of digitally signed PDFs without raising any warnings or
errors. Both of them abuse a PDF feature called Incremental
Update. Incremental Update allows changing the content of
a PDF by appending a document modification to the file.
However, there are essential differences between the shadow
attacks and ISAs. ISAs manipulate a PDF by appending a
malformed Incremental Update, wherein objects are missing or
not closed properly. This approach was motivated by viewers
providing either a denylist or allowlist of potentially dangerous
objects. Based on malformed Incremental Updates or missing
dangerous objects in the deny/allowlists, Mladenov et al. [6]
were able to bypass the verification of multiple viewers. As
a result, the PDF viewers extended the lists with potentially
dangerous objects, improved the verification to detect mal-
formed Incremental Updates, and warned users in the event
of inconsistencies.

In contrast to previous attacks, our shadow attacks do not
use a malformed Incremental Update, but instead are standard-
compliant and use well-formed Incremental Updates. Thus, no
inconsistencies in the file structure exist. The Hide and Hide-
and-Replace variants also bypass even perfectly implemented
denylists or allowlists. Thus, none of the currently imple-
mented countermeasures which detect malicious Incremental
Updates prevents shadow attacks.

g) Results: We show the applicability of the shadow
attacks by evaluating 29 PDF applications and revealing vul-
nerabilities in 16 of them, including Adobe Reader and Foxit
Reader. Moreover, we achieve a privilege escalation on Adobe
products allowing the attackers to execute high privileged
actions on victims’ computers.

h) Contributions: This paper makes the following key
contributions:

• We introduce an attacker model that is based on real-
world scenarios and allows an attacker to place shadow
content into a PDF before it is signed (section III).

• We are the first to present the shadow attack class on PDF
signatures. We found three different variants that allow the
ability to hide, to replace, and to hide-and-replace content
without invalidating the signature validation status of a
digitally signed PDF (section IV).

• We implemented PDF-Attacker, an open-source Python
toolset for automatic exploit generation (section VI).

• We show the impact of shadow attacks by breaking 16 of
29 PDF applications (see section VII).

• We implemented and evaluated PDF-Detector, an open-
source shadow attack prevention and detection tool (sec-
tion VIII).

• We apply shadow attacks beyond signed PDFs and reveal
a critical code execution vulnerability in Adobe Reader
(section IX).

i) Responsible Disclosure: We responsibly disclosed
all issues to the respecting vendors. Therefore, we cooperated
with the CERT-Bund (BSI) and provided a dedicated vul-
nerability report, including all exploits, to them. They kindly

2

https://pdf-insecurity.org

created the initial contact with all vendors and managed the
distribution of the report. In the case of technical queries, we
directly supported the vendors to understand and fix the issues.
Some of the vendors contacted us regarding a re-test of their
countermeasures, which we also provided.

II. BASICS

a) PDF File Structure: The Portable Document Format
(PDF) is a platform-independent document format. It consists
of three main parts, as depicted in Figure 2.

The first part defines the PDF body. It contains different
objects, which are identified by their object number. The most
important object is the root object, which is called the Catalog.
In Figure 2, the Catalog has the object identifier 1 0. The
Catalog defines the whole PDF structure by linking to other
objects in the body. In the example given, the Catalog links
to a form object AcroForm, to a PDF MetaData object, and
to actual PDF Pages object. The Pages object can reference
multiple Page objects, which in turn reference, for example,
the actual Content, Font, and Images objects. These object
references are technically implemented by using a dedicated
reference string based on object numbers. For example, the
Pages object references the Page object by using the reference
5 0 R. The second part of the PDF is the Xref table. It contains
references to the byte positions of all objects used in the PDF
body. Objects that are not in use can be explicitly flagged as
free in the Xref table. For example, the image object 9 0 is
free and not displayed in the PDF. Although flagged as free,
the entry in the Xref table for object 9 0 can contain the byte
position of the free object. The third part is the Trailer. It
consists of two further references: one to the byte position at
which the Xref table starts, and another link to the identifier
of the root object (1 0).2

b) Incremental Update: The content of a PDF may be
updated for different reasons, for example, by adding review
comments or by filling out PDF forms. From a technical
perspective, it is possible to add this new content directly
into the existing PDF body and add new references in the
Xref table. However, this is not the case according to the
PDF specification. Changes to a PDF are implemented using
Incremental Updates.

An Incremental Update adds new objects into a new PDF
body, which is directly appended after the previous Trailer.
To adequately address the new objects, a new Xref table and
Trailer are also appended as well for each Incremental Update.
Summarized, a PDF can have multiple bodies, Xref tables, and
Trailers, if Incremental Update is applied.

c) PDF Signature: For protecting the integrity and the
authenticity of a PDF, digital signatures can be applied. For
this purpose, a Signature object is created and appended to the
PDF by using Incremental Update. It is also possible to sign
a PDF multiple times (e.g., a contract), resulting in multiple
Incremental Updates. The Signature object contains all relevant
information for validating the signature, such as the algorithms
used and the signing certificate. It also defines which bytes of
the PDF are protected by the signature, that is, which bytes
are used to compute the cryptographic hash that the signature

2The root element does not need to have the identifier 1 0.

/Catalog 1 0

/AcroForm 2 0

/MetaData 3 0

/Pages 4 0

/Page 5 0

/Contents 6 0

/Font 7 0

/Image 8 0

/Image 9 0

Xref

1 0 obj Reference (In Use)

2 0 obj Reference (In Use)

3 0 obj Reference (In Use)

4 0 obj Reference (In Use)

5 0 obj Reference (In Use)

6 0 obj Reference (In Use)

7 0 obj Reference (In Use)

8 0 obj Reference (In Use)

9 0 obj Reference (Free)

Trailer

startxref Reference

Root Reference

Part
1:

B
ody

Part
2:

X
ref

table
Part

3:
Trailer

Figure 2. A PDF consists of three parts: body, Xref table, and Trailer. Solid-
lined arrows indicate direct object references. Dashed-lined arrows indicate
byte offset references.

algorithm uses. A typical signature starts at the first byte
and ends at the last byte of the trailer.3 Once a user opens
a PDF containing a PDF signature, the viewer application
automatically validates the signature and it provides a warning
if the content has been modified.

d) Incremental Update on Signed Documents: Even on
a signed PDF, a further Incremental Update can be applied.
Examples are review annotations or additional signatures.
Since such Incremental Updates are appended to the signed
document, and no changes within the signed area are made,
the signature remains valid.

In 2019, Mladenov et al. [6] showed that an Incremental
Update can change the presentation of the entire signed docu-
ment. As a countermeasure, the authors recommended letting
the viewer raise a warning if the PDF provides content outside
the signature’s scope. However, this countermeasure is not
standard compliant. There are legitimate use cases where an
Incremental Update should not lead to a warning, for example,
a second digital signature. Thus, the vendors implemented
a different countermeasure by creating a list of potentially
dangerous elements forbidden within an Incremental Update.
Currently, the viewers search for such elements within an
Incremental Update and throw a warning on a match.

In this paper, we focused on the elements which viewers
consider harmless within an Incremental Update. We show that

3For technical reasons, there is a gap inside this range that is unprotected.
It contains a PKCS#7 blob of the signature itself.

3

attackers can still change the signed document’s presentation
by neither invalidating the signature nor raising any warnings.

III. ATTACKER MODEL

The attacker model is based on real-world use cases in
which a PDF document, for example, a contract, is signed. In
these use cases, attackers can inject invisible parts (“shadow
content”) into a PDF before it is signed. After the signing,
the attackers again manipulate the signed PDF. Thereby, they
enforce a visible change in its content without invalidating the
signature.

Attackers Signers Victims

(1) PDF1 = createPDF()

(2) PDF2 = sign(PDF1)

(3) PDF3 = manipulate(PDF2)

Figure 3. Attacker Model: The attackers prepare the Shadow Document
(PDF1) which the Signers sign (PDF2). Afterward, the Attackers modify the
content of the signed PDF (PDF3) and send it to the Victims.

a) Attacker Capabilities: As shown in Figure 3, the
attacker capabilities can be divided into three phases. The
output of each phase is a PDF file.

1) The attackers create the PDF document PDF1 =
createPDF() that contains the invisible shadow content
(e.g., a text or an image).

2) The signers receive PDF1 (e.g., by email) and create a new
document PDF2 by signing PDF1, i.e. PDF2 = sign(PDF1).

3) The attackers receive PDF2. They can modify PDF2
again, for instance, the attackers create PDF3 =
manipulate(PDF2). The attackers send PDF3 to the vic-
tims.

The main difference to the previous work [6] is that the
attackers are allowed to embed malicious content before the
PDF is signed instead of solely modifying the PDF after the
signature has been applied.

b) Winning Conditions: The attackers are successful
() if the following conditions are fulfilled:

1) The signers only sign PDF1 if they do not notice of the
shadow content. In other words, all changes injected by
the attackers must be invisible to the signers.

2) The victims see the shadow content once they open PDF3.
3) The signature verification of PDF3 is successful. The

victims trust the signers’ public key. The victims do not
trust any other key. In particular, they do not trust the
attackers’ key.

4) Opening PDF3 does not show any errors or warnings, for
example, due to a malformed file format.

Some PDF viewer show a warning even if it validates
the unmanipulated PDF2. If the signature validation of the
unmanipulated PDF2 and the manipulated PDF3 show exactly
the same warnings, we call the attackers’ success limited (G#).

IV. SHADOW ATTACKS: OVERVIEW AND PRELIMINARIES

The central concept of shadow attacks is that the attackers
prepare a PDF document by injecting invisible content –
“shadow content”. We call this prepared PDF a “shadow
document”. Afterward, the signing entity, for example, a
person or an online signing service, receives the shadow
document, signs it, and sends it back to the attackers. Despite
the integrity protection provided by the digital signature, the
attackers can modify the signed shadow document and change
the shadow content’s visibility. Nevertheless, the manipulation
is not detected, and the digital signature remains valid. Finally,
the attackers send the modified signed shadow document to
the victim. Although the attackers altered it, the signature
validation is successful. However, the victims see different
content than the signing entity. That is, the victims see the
shadow content.

A. Shadow Documents in the Real World

Considering the applicability of shadow documents, we fo-
cus on the following two questions: (1) How can the attackers
force the signing of a shadow document? (2) Why are the
attackers capable of modifying a signed shadow document?

a) Signing a Shadow Document: In companies and
authorities, relevant documents like contracts or agreements are
often prepared by the employees, which take care of most of
the details and technicalities. An authorized person then signs
the document after a careful review. Another scenario is the
signing process of a document within a consortium. Usually,
one participant creates the final version of the document, which
is then signed by all consortium members. Considering the
given examples, a maliciously acting employee or consortium
member can inject invisible shadow content during the editing.
Consequentially, this content will be signed.

Additionally, multiple cloud signing services like Adobe
Cloud, DocuSign, or Digital Signature Service exist. Among
other functionalities, such services receive a document and sign
it. Such services can also be used to sign shadow documents.

b) Manipulating a Shadow Document: One can assume
that a signed Portable Document Format (PDF) document
cannot be changed and that it is final. This assumption is
not the case due to the desired features like multiple sig-
natures or annotations. For example, a PDF document can
be signed multiple times. This process is essential in many
use cases since it allows stakeholders within a consortium to
have a single document containing the signatures from all
partners. From a technical perspective, each new signature
appends new information to the already signed document (see
paragraph II-0b). Nevertheless, the document should still be
successfully verified for each signature. Additionally, the PDF
specification defines interactive features like annotations (e.g.,
sticky notes and text highlighting). Since annotations do not
change the content but only put remarks on it, these changes
are considered harmless. Thus, the PDF specification allows
the injection of seemingly harmless objects in a signed file
without invalidating the signature.

B. Analysis of Document Modifications

Currently, PDF applications analyze the changes made after
signing and try to estimate if these changes are legitimate. For

4

root

/Catalog

/Pages

/Page1

/Contents /Font
...

/Img

Overlay

root

/Catalog

/Pages

/Page1

/Contents /Font
...

Signed Shadow Document

Hide Overlay

Signed Shadow Document

Replace /Font

root

/Catalog

/Pages

/Page1

/Contents /Font
...

/Contents

Signed Shadow Document

Hide and Replace /Catalog

/Catalog

/Pages

/Page1

/Page1

/Contents /Font
...

/Img

Overlay /Page1

/Contents /Font
...

root

/Catalog /Catalog

Signers

Attackers

Signers

Attackers

Signers

Attackers

Hide Replace Hide-and-Replace

...

Figure 4. We show three variants of manipulating a shadow PDF document without being detected: Hide, Replace, and Hide-and-Replace.

instance, overwriting content on a page of the document is not
allowed, leading to invalid signature verification. Such attacks
were evaluated in 2019 by Mladenov et al. [6].

In this paper, we first analyzed which changes are consid-
ered harmless by the PDF applications and abused these to
exchange the entire content within a PDF document. None
of the previous work provides such an in-depth analysis.
Thus, a gap concerning the possible manipulations existed.
The allowed changes can be summarized as follows.

a) Appending new Xref table and Trailer: Appending
a new Xref table and Trailer occurs on each change on
PDF documents. For instance, for each signing process using
the signature information, a new Xref table and Trailer are
generated. Thus, appending these at the end of the file is
considered harmless.

b) Overwriting Harmless Objects: In their paper,
Mladenov et al. [6] were able to append new objects beyond
the signed document by overwriting existing objects and thus
replacing the content. The attack was called an Incremental
Saving Attack (ISA). Nevertheless, the authors considered
only object types: Catalog, Pages, Page, and Contents. This is
reasonable since these objects directly influence the content
shown by opening the document. The applications’ vendors
fixed the vulnerabilities by detecting the definition of such
objects after the signature was applied. Inspired by Markwood
et al. [7], we considered the definition of further objects like
fonts or metadata, which also influence the presented content.

c) Overlapping Objects: During our analysis, we raised
the question regarding the visible presentation of overlapping
content. More precisely: “If two objects share the same po-
sition on a page, which object shows the application in the
foreground and which one in the background?”. We determined
that the declaration of the object within the document is
decisive. In the case of overlapping, the first object is displayed
on top of the second one. Thus, we can append the same
objects to a PDF file but in a different order. Since the content
of the objects is not changed, this Incremental Update is also

considered harmless. Nevertheless, the visible content changes
when opening the PDF file.

d) Changing Interactive Forms: We observed an un-
expected feature applied to interactive forms, which overlays
the content of a text field. By clicking on the text field, its
content is shown, and the overlay disappears. While we avoid a
discussion regarding the usefulness of this feature, we observed
that changes on the overlay are considered harmless and do not
invalidate the signature.

C. Summary

The PDF specification defines a compromise between
usability and security by softening the rules regarding the
integrity protection of digitally signed documents. This means
that signed PDF documents can be extended by applying
Incremental Updates. Attackers can inject content within the
Incremental Update that is appended to the end of the signed
document. Since PDF signatures are computed on a fixed range
of bytes of the PDF file, the Incremental Update is outside of
that range, and it does not violate that cryptographic protection.
By defining exceptions of allowed and forbidden changes,
the developer teams are responsible for the detection and
classification of dangerous elements within each Incremental
Update. Wrong decisions lead to vulnerabilities. In the next
section, we show how changes that are classified as harmless
can enable the exchanging of content without invalidating the
signature.

V. SHADOW ATTACKS: HIDE, REPLACE, AND
HIDE-AND-REPLACE

In this section, we present three different classes of shadow
attacks: Hide, Replace, and Hide-and-Replace. Each attack
class introduces a different technique to stealthily manipulate a
signed PDF without causing any warnings or exceptions during
its signature validation.

Each attack is based on two manipulation steps made by
the attackers as depicted in Figure 3. In Step 1, the attackers

5

(a) A shadow PDF document digitally signed by the victims containing a
donation amount.

(b) Manipulated PDF document after signing which contains attackers’
account data (top row).

Figure 5. Form-based Attack. On the left side, the victims sign a donation to a non-profit organization. On the right side, the attackers manipulate the signed
document to display different bank account information. The validity status of the digital signature remains untouched. Apart from the account information, both
documents are indistinguishable.

prepare the document by injecting the shadow content. This
shadow document is sent to the signers. In Step 2, the attackers
receive the signed document and make the shadow content
visible. This document is sent to the victims.

All in all, we created eight different exploits covering all
attack variances. In the following sections, we explain the idea
of each attack and its execution.

A. Shadow Attack: Hide

This class of shadow attacks aims to hide the content
relevant to the victims behind a visible layer. For example,
the attackers can hide the text “You are fired!” behind a full-
page picture showing “Sign me to get the reward!”. Once the
attackers receive the signed document, they manipulate the
document so that the viewer application no longer renders the
picture.

Hide attacks have two advantages from the attackers’
perspective:

1) Many viewers show warnings if new visible content is
added using Incremental Update. However, they do not
warn in most cases if content is removed.

2) The objects are still accessible within the PDF. In the
example above, the text “You are fired!” can still be
detected by a search function. This detection might be
necessary if an online signing service is used, and it
reviews the document by searching for specific keywords.

We identified two variants of this attack class, which are
explained further.

1) Variant 1: Hide Content via Referenced Object: In this
attack variant, the attackers create overlay objects such as
images or form fields and hide them after the document is
signed to reveal the content below these objects. We created
three different exploits that hide content via malicious image,
hide form fields via malicious form fields, and hide content
via malicious form fields.

a) Step 1 – Injecting the shadow content: As shown in
Figure 4, the attackers inject one or multiple images and place
them over the original content. The images could overlay an
entire page or only parts of the content, for example, a digit
or passage of text. The attackers entirely control the position
and visibility of the placed image.

b) Step 2 – Making shadow content visible: The sim-
plest method for this is to create an Incremental Update, which
only updates the Xref table by setting the overlay object to free.
However, many viewers (e.g., Adobe) classify this change as
dangerous and throw an error or a warning. For this reason,
we use another approach: we use the same object ID within
the Incremental Update, but we define it as a different object
type. For example, we change the overlay type Image to XML/

Metadata. Additionally, we added an Xref table update pointing
to the metadata object but keeping the object ID of the overlay.

When opening this manipulated document the overlay is
hidden because Metadata cannot be shown. Since adding Meta-
data to a signed PDF using Incremental Update is considered
harmless, the signature remains valid.

Moreover, we observed that attackers could hide form
fields if they changed their references to empty objects. To
execute the attack, the attackers place the malicious form fields
above the original ones in which the attackers place predefined
values. The manipulated document is sent to signers. They
only see the malicious form fields. After receiving the signed
document, the attackers let the malicious fields disappear by
referencing them to empty objects. In this way, the original
form fields, including the attackers’ predefined values, are
shown to the victims.

2) Variant 2: Hide Content via Object’s Order: During our
analysis, we observed that for two different form fields with the
same size and at the same x-y position within the document,
only the last one is shown. Furthermore, the same form fields
can be re-declared within an Incremental Update as long as
none of the content changes. Based on both observations, the
attackers can build the following exploit.

a) Step 1 – Injecting the shadow content: The attackers
inject into the original unsigned document their shadow form

6

fields at the same x-y position as that of the content they want
to hide, but they declare their form objects before the original
ones. The signers see only the original form fields since they
are defined after the shadow ones.

b) Step 2 – Making shadow content visible: After
receiving the document, the attackers append an Incremental
Update which copies and pastes the original and the shadow
form fields. In this case, however, they first place the original
and then the shadow form fields. As a result, the shadow
form fields and their values are shown instead of the original
ones. Since the objects themselves have not modified, but only
their declaration order, the Incremental Update is considered
harmless.

B. Shadow Attack: Replace

The main idea of this shadow attack class is to use an
Incremental Update that directly changes previously declared
objects. Since the modification is not allowed for all types of
objects, the attacker only changes objects that are considered
harmless but can nevertheless change the document’s visible
content. For instance, the (re)definition of fonts does not
change the content directly. However, it influences the view of
the displayed content and makes number or character swapping
possible. We identified two variants of this attack class.

1) Variant 1: Replace via Overlay: PDF Forms support
different input masks, such as text fields, text areas, and
radio/selection buttons. Forms can have default values, for
example, a predefined text. Users can dynamically change
these values and store them in the PDF document.

The attack abuses a dedicated property of PDF text fields.
A text field can show two different values: the real field value
and an overlay value, which disappears as soon as the text
field is selected. A form field’s real value is contained in an
object key named /V. The content of the overlay element is
defined within a /BBox object. The /BBox object is comparable
to the hint labels known from HTML forms. For example, the
hint username indicates that the username should be entered
into a specific login field. In contrast to HTML, in PDF there
is no visual difference between the hint and the actual value.
We depict an example attack in Figure 5.

a) Step 1 – Injecting the shadow content: First, the
attackers create a transfer slip (PDF1) containing an interactive
form which the signers complete before signing the document.
The attackers initialize some of the form elements with default
values. In the example provided in Figure 5, the attackers set
the values /V of the first three form fields to Attacker and the
attackers’ IBAN and BIC. Second, the attackers set the overlay
values (/BBox) to unicef and the corresponding IBAN and BIC.
As long as the signers do not focus on the prepared values,
they believe that the correct values are already pre-filled.

b) Step 2 – Making shadow content visible: The signers
sign the PDF without changing the pre-filled forms. Once
the attacker receives PDF2, they update the text fields by
replacing the overlay stored in /BBox with different values. The
values stored in /V remain unchanged. Viewers consider this
replacement harmless since the original text field value is not
changed but rather only the overlay.

Once the victims open PDF3, the viewer first verifies if the
values stored in /V within each text field have been changed and

differ from the signed values. If the values have been changed
and differ from the signed values, the signature validation fails.
Since the attackers do not change any values stored in /V, the
signature remains valid. The viewer then processes each text
field object and shows the /BBox value if it maps to the signed
one. Otherwise, the value stored in /V is presented. Since the
attackers change the /BBox value, the value /V (being Attacker

) is shown, and the corresponding malicious transaction slips
through.

As a result, the signers and the victims have different views
on the same document, which should be prevented by the
digital signature. For each attack variant, we create one exploit.

2) Variant 2: Replace via Overwrite: The idea of the
attack is based on the ISA described by Mladenov et al.
[6]. Consequently, the vendors implemented a list of objects
considered dangerous and disallowed their occurrence in In-
cremental Updates. However, in many applications, fonts are
considered harmless, and thus, they can be defined within an
Incremental Update. This attack variant proves the opposite.

a) Step 1 – Injecting the shadow content: The attackers
analyze the fonts used in the original document and distillate
which are relevant for the content. Second, default fonts like
Verdana or Times New Roman are usually not included in
the PDF. In this case, the attackers need to inject the font
description as shown in Figure 4.

b) Step 2 – Making shadow content visible: After the
document is signed, the attackers append a new font descrip-
tion and overwrite the previous one. The new font description
completely changes the presentation of the original text. For
example, we created an exploit changing the presentation of the
original text US90 5628 3174 5628 3174 to US01 2345 6789
2345 6789. Since the definition of new fonts is considered
harmless, the applications verifying the signature do not warn
of the changes made. A popular software to create a malicious
font description is FontForge.4

C. Shadow Attack: Hide-and-Replace

In this shadow attack class, the attackers create a shadow
PDF document which is sent to the signers. The PDF docu-
ment contains a hidden description of another document with
different content. Since the signers cannot detect the hidden
(malicious) content, they sign the document. After signing,
the attackers receive the document and solely append a new
Xref table and Trailer that enables the hidden objects.

We identified two variants of this attack class. Both variants
differ in the way the attackers enable the hidden content after
the document had been signed. For each attack variant, we
created one exploit.

1) Variant 1: Change Object References: The idea of this
attack variant is to use the Xref table for changing the reference
to the document’s Catalog (or any other hidden object) to point
to the shadow document. In Figure 6, an example of the attack
is depicted and will be explained further.

a) Step 1 – Injecting the shadow content: The attackers
create a PDF file containing two objects with the same object
ID (e.g., 4 0 obj) but different content: “Sign the document

4https://fontforge.org/en-US/

7

https://fontforge.org/en-US/

Figure 6. The attackers successfully manipulate a signed document and force different views on the signers and the victims by using the Hide-and-Replace
attack variant.

to get a reward!” and “You are fired. Get out immediately”. As
shown on the left side in Figure 6, within the Xref table section,
the seemingly harmless content is referenced. The signers only
see this content and sign the PDF file.

b) Step 2 – Making shadow content visible: After
receiving the signed PDF, the attackers append a new Xref table
and exchange the reference to the object (e.g., 4 0 obj) with
the malicious content “You are fired. Get out immediately”. A
new Trailer is also appended. Since the inclusion of an Xref
table pointing to an already defined object within the signed
area is considered harmless, there is no warning of the changes
made. The signature verification is successful. Nevertheless,
the victims see different content than what the signers see.

2) Variant 2: Change Objects Usage: The idea of this
attack variant is again to use the Xref table. However, instead
of changing the reference to the objects, the attackers specify
which objects are “in use” and which are not used (i.e., “free”).
Using this Xref table feature enables attackers to modify
the visibility of previously included objects. By this means,
attackers can hide “in use” objects and show “free” objects.
This is possible without changing the objects themselves. The
attackers only touch the Xref table, but the signed document’s
presentation can be changed entirely.

a) Step 1 – Injecting the shadow content: Similar to the
first attack variant, the attackers insert the malicious content
which is correctly referenced but marked in the Xref table as
not in use. Thus, only the content of the original document is
shown to the signers.

1 %%% Xref table in the document sent to the signers. %%%
2 % Original Xref table
3 xref % start of the Xref table
4 1 8 % 8 objects starting with the object Id 1
5 0000000010 00000 n % Object 1 at offset 10 is in use
6 0000000099 00000 n % Object 2 at offset 99 is in use
7 ... % Further object references
8

9 % Injection point: new malicious but hidden objects
10 9 1 % 1 object starting with the object Id 9
11 0000006666 00000 f % Object 9 at offset 6666 is free

Listing 1. The attackers manipulate the original document by injecting new
objects. In the given example, this is the 9 0 obj. The attackers hide this
object by disabling its usage via the Xref table.

b) Step 2 – Making shadow content visible: Once,
the attackers receive the signed manipulated document, they
append a new Xref table. The new Xref table enables the hidden
content and disables the original one.

1 %%% Xref table in the document sent to the signers. %%%
2 % Original Xref table
3 xref % start of the Xref table
4 1 8 % 8 objects starting with the object Id 1
5 0000000010 00000 n % Object 1 at offset 10 is in use
6 0000000099 00000 f % Object 2 at offset 99 is free
7 ... % Further object references
8

9 9 1 % 1 object starting with the object Id 9
10 0000006666 00000 n % Object 9 at offset 6666 is in use

Listing 2. The attackers manipulate the signed document by appending the
following Xref table. In the given example, the object with Id 2 defining the
content of a page is disabled and the object with Id 9 is enabled and thus
visible.

D. Stealthiness of Shadow Attacks

Shadow attacks require interactions with the signers and
the victims. Thus, the attackers must create the document so
that neither of the two entities becomes suspicious by merely
opening and reviewing the document. This is truly the case for
all attack variants. However, further actions like text selection,
copy-pasting text, or searching within the document might
expose the attack’s stealthiness.

For all attack classes, we require that the victim cannot
detect the shadow content in any way. Thus, we concentrate
on cases in which the signers might detect the attacks.

The Hide-and-replace class is entirely concealed from the
signers. From the signers’ perspective, there is no possibility
of detecting the shadow content. Variant 2 of the attack
is restricted only to form fields since its disappearance is
considered harmless by many viewers.

8

Hide Variant 1 (Hide via Referenced Object) might be
detected by searching for a specific text behind the overlay or
selecting the overlayed content. With respect to this restriction,
the overlayed content can be only a number or a text area that
makes the attack hard to detect. Considering Variant 2 (Hide
via Object’s Order) the attack is entirely concealed for form
fields since we can hide previously shown fields.

Concerning Replace Variant 1 (Replace via Overlay), the
attack can be detected only if a form field is editable and the
user clicks into the field. Noteworthy is that the attackers define
the capabilities of the form fields and can always deactivate the
editability. The Replace Variant 2 (Replace via Object’s Order)
can be detected by searching for the original content or copy-
pasting the manipulated content. The copied text contains the
original value.

E. Shadow Attack vs. Incremental Saving Attack

In this section, we highlight the differences between our
Shadow attack and the attacks known as ISA [6] to avoid
confusion between both attack concepts. First, we provide
details regarding the ISA by analyzing all known and publicly
available ISA attack vectors plus their corresponding counter-
measures. Second, we explain why these countermeasures are
insufficient to mitigate the Shadow attack.

a) Attack Vectors: ISA overwrites content objects di-
rectly or by using a malformed Incremental Update to bypass
the protection mechanisms. We analyzed all available ISA
attack vectors [8] and classified them into four categories:
forbidden objects, invalid objects, missing Xref table, and miss-
ing Trailer. We estimated that none of the four categories is
generic. Every category depends on the corresponding viewer
and even on its version. Additionally, each of them inter-
prets malformed objects and Incremental Updates differently.
Finally, one can say that ISA is less generic and software-
dependent.

In contrast, the shadow attack relies on a well-formed
Incremental Update and thus does not depend on each viewer’s
specific interpretation, but on standard-compliant features.

Considering the creation of malicious PDF documents, ISA
scales better than the shadow attacks. To carry out ISA, the
attackers possess one signed file by a trusted authority, and
they can create malicious PDF documents with any content.
The attackers can display only content, which was hidden
during the signing process and which is already part of the
signed document. As a result, the amount of malicious PDF
documents, which the attackers can create, is limited.

b) Attacker Model: Both attacks rely on different at-
tacker models: ISA relies on an attacker possessing a digi-
tally signed PDF document. The shadow attack additionally
assumes that the attackers inject malicious content before the
PDF is signed.

c) Countermeasures: We summarized the implemented
ISA countermeasures in Table I.

The first countermeasure is the definition of forbidden
objects within an Incremental Update, i.e., blacklisting the
objects /Pages, /Page, /Contents. This is reasonable because
each of these objects directly influences the presented content

ISA Countermeasures
Shadow Attacks Forbidden

Objects
Invalid
Objects

Missing
Xref table

Missing
Trailer

Hide
Replace G#
Hide-and-Replace
 Countermeasure insufficient G# Countermeasure partially successful
Countermeasure sufficient

Table I. EVALUATING THE ISA COUNTERMEASURES REVEALS THEIR
INEFFECTIVENESS AGAINST THE shadow ATTACKS. NO CURRENTLY

IMPLEMENTED COUNTERMEASURE IS SUFFICIENT.

by opening a PDF. All other countermeasures target malformed
Incremental Update.

Shadow attacks are not affected by any of these counter-
measures since they do not rely on malformed Incremental
Update. Only the Replace via Overwrite variant is restricted
since the definition of a new font could be detected by extend-
ing the current lists with forbidden objects. Nevertheless, the
Replace via Overlay is not affected. The Hide and Hide-and-
Replace variants are always applicable as long as the viewers
allow Incremental Update.

To summarize, PDF viewers have to choose between be-
ing standard-compliant (by allowing Incremental Update) and
vulnerable, or being secure and not standard-compliant.

VI. PDF-ATTACKER

In this section, we present PDF-Attacker, a toolset that
automatically creates shadow attack exploits.

a) Design of PDF-Attacker: PDF-Attacker is written in
Python using Jupyter Notebooks. This design enables the high
flexibility that is necessary to resemble the shadow attacks.
For each attack variant of each shadow attack class, we
created a separate Jupyter Notebook, so that all exploits can
be investigated and extended independently.

Initially, our goal was to use a single Python PDF library
for all attacks. It turned out that this is not ideal since every
attack addresses different PDF features. For example, for
attacks using forms, the reportlab library provides many useful
features. In contrast, the hide-and-replace attacks require low
level access to PDF objects, which is possible with pypdf4.
In the end, we used different libraries for different attacks in
order to maximize the functionality of the tool.

b) Configuration of PDF-Attacker: Before starting to
work with PDF-Attacker some configuration steps need to
be executed. The configuration steps can be summarized as
follows:

• Content to manipulate: Independent of the attack variant,
PDF-Attacker needs to know which content is in the
attack scope. This could be an entire page, a field value,
or a font description.

• Shadow content: Depending on the attack variant, the
shadow content also needs to be prepared. This content
could be an image overlapping some content, a malicious
font, a malicious value, or an entire document with a
specific content.

• Key material: Many PDF applications offer the ability
to digitally sign a PDF only in the commercial version.
Since we do not want to rely on an external software, we

9

decided to implement a signing module. The correspond-
ing key material can also be specified by using different
keys than those provided.

c) Exploit Generation with PDF-Attacker: The exploit
generation with PDF-Attacker is separated in three phases, as
depicted in Figure 7. In the first phase “Generate Shadow

q PDF

Phase 1: Generate Shadow PDF

Phase 2: Sign Shadow PDF

Phase 3: Enable Shadow Content

p Shadow Document

Module 1: Prevention

Module 2: Detection

result

result

Execute Module 1,
if no active Shadow
elements found

PDF-Attacker PDF-Detector

p PDF

p

p

is signed? falsetrue

Figure 7. The PDF-Attacker takes an arbitrary PDF as input, builds-in the
shadow objects (Phase 1), signs the document (Phase 2), and finalizes the
attack by enabling the shadow content (Phase 3). The PDF-Detector is a tool
to detect malicious documents generated in Phase 1 and Phase 3. It can also
take an arbitrary PDF as input and is described in section VIII.

PDF”, PDF-Attacker takes an arbitrary PDF as input and
inserts the shadow elements according to the chosen attack
variant. This phase is the most complex part of the attack. The
reason is the complexity and flexibility of the PDF standard.
The tool should be able to process different PDF versions,
new features, and interactive elements. The tool should be find
the relevant content within complex structures and place the
attack vector in a usable way. We were able to reduce this
complexity by using multiple libraries that parse the PDF files
for us, and find the relevant content. The relevant libraries can
be summarized as follows:

• Hide: The wand library allows the conversion of an
arbitrary PDF to an image, which can be used as an
overlay.

• Replace: The python libraries reportlab and fitz provide
interfaces to work with forms and change their values.
Some attack variants require low-level access to PDF
source code to manipulate the appearance or exchange the
existing fonts. For such cases, we use the pypdf4 library
in addition.

• Hide-and-Replace: The preparation of this attack requires
creating a complete shadow document and the corre-
sponding Xref table. Only the pypdf4 library provides
such a low-level interface allowing us to automate these
steps. Some of the attack steps, however, are not sup-
ported by any library. Thus, we directly manipulated the
PDF.

The “Sign Shadow PDF” phase. This step prepares the PDF
that will be signed. We decided to simulate the signing process
in Python, using the endesive library. This decision allows
simulating both the preparation and the modification phase
easily. Generally, this step could also be executed externally,
for example, by using Adobe Acrobat to sign the prepared
PDF. The “making shadow content visible” phase. In this step,

the signed PDF is manipulated, so that the shadow content is
shown.

d) Running PDF-Attacker: The deployment of PDF-
Attacker is challenging because many Python libraries rely on
external tools. For example, to convert an arbitrary PDF into a
PNG, a dedicated imagemagic package must be installed, and a
proper policy.xml must be configured. To minimize the ef-
fort of using or extending PDF-Attacker, we used VSCode with
remote docker containers as deployment. By this means, using
PDF-Attacker only requires VSCode and Docker. Everything
else, including downloading all relevant packages and setting
up the execution environment, is automatically configured.

e) Limitations: We are aware of the limitations con-
cerning the PDF documents used as an input. Manipulations
on encrypted documents are not supported. Also, documents
having one or multiple Incremental Updates have not yet
been tested. This limitation also includes documents that have
already been signed and is a natural limitation due to the 1300-
pages PDF specification’s complexity.

Considering the Replace via Overwrite attack, we created
one malicious font. Thus, only files having this font, can be
attacked. This limitation can be circumvented by automatically
extracting the fonts contained in a PDF file and using tools
like FontForge 5 to generate malicious fonts on the fly. Due to
the high complexity and variants of fonts, we considered this
functionality out-of-scope.

Concerning the shadow content, we prepared proofs-of-
concept for each attack variant. We allow variations regarding
this content. However, more complex changes, including ma-
nipulations on multiple forms or pages, are not or only partially
supported.

VII. EVALUATION

In this section we present the results of our evaluation. The
manipulated PDF documents created during the research were
tested as black box procedures under all viewing applications
listed in Table II.

A. Test Environment

Three computer systems were used for the simulation of
the three entities attackers, signers, and victims. While the
attackers’ and signers’ systems are based on Windows 10,
we divided the victims’ systems into Windows 10, macOS
Catalina, and Ubuntu 18.04.3 LTS as a Linux distribution.
Thus, we could test the effects of the manipulations on all
standard operating systems. As part of a digital ID created
in Adobe Acrobat, the signing system is the only system
that contains the private key for digital signing. To sign the
PDF documents, we used the Apache PDFBox library, Adobe
Acrobat Pro 2017, and PDF-Attacker. We created 8 different
exploits for all attack variants and evaluated the manipulations
under all viewing programs on the victims’ systems.

B. Applications

We included PDF viewing applications that could correctly
process signed PDF documents. In total, we found 29 PDF

5https://fontforge.org/docs/scripting/python.html

10

https://fontforge.org/docs/scripting/python.html

Shadow Attack Category Summary Fixed
Application Version Hide Replace Hide-and-Replace (Dec. 7th, 2020)

Adobe Acrobat Reader DC 2019.021.20061

W
in

do
w

s

 Ë
Adobe Acrobat Pro 2017 2017.011.30156 Ë
Expert PDF 14 14.0.25.3456 64-bit G# G# G# G# o
Foxit Reader 9.7.0.29455 # Ë
Foxit PhantomPDF 9.7.0.29478 # Ë
LibreOffice Draw 6.4.2.2 # G# G# G# Ë
Master PDF Editor 5.4.38, 64 bit # o
Nitro Pro 12.16.3.574 G# G# G# G# o
Nitro Reader 5.5.9.2 G# G# G# G# o
PDF Architect 7 7.0.26.3193 64-bit G# G# G# G# Ë
PDF Editor 6 Pro 6.5.0.3929 o
PDFelement 7.4.0.4670 Ë
PDF-XChange Editor 8.0 (Build 331.0) G# G# G# G# o
Perfect PDF Reader V14.0.9 (29.0) G# G# G# G# o
Perfect PDF 8 Reader 8.0.3.5 o
Perfect PDF 10 Premium 10.0.0.1 o
Power PDF Standard 3.0 (Patch-19154.100) Ë
Soda PDF Desktop 11.1.09.4184 64-bit # G# G# G# Ë

Adobe Acrobat Reader DC 2019.021.20061

m
ac

O
S

 Ë
Adobe Acrobat Pro 2017 2017.011.30156 Ë
Foxit Reader 3.4.0.1012 Ë
Foxit PhantomPDF 3.4.0.1012 Ë
LibreOffice Draw 6.4.2.2 # G# G# G# Ë
Master PDF Editor 5.4.38, 64 bit # # # # –
PDF Editor 6 Pro 6.8.1.3450 # # # # –
PDFelement 7.5.7.2895 # # # # –

Master PDF Editor 5.4.38, 64 bit

L
in

ux # o
LibreOffice Draw 6.4.2.2 # G# G# G# Ë
Okular 1.9.3 o∑

29 12 6G# 16 10G# 16 10G# 16 10G# 15Ë 11o

 Application vulnerable. G# Vulnerability limited. # Not vulnerable.
Ë All reported vulnerabilities are fixed. o Unfixed application.

Table II. EVALUATION RESULTS. OF THE TESTED APPLICATIONS, 16 OUT OF 29 APPLICATIONS ARE VULNERABLE TO AT LEAST ONE ATTACK (). IN
10 CASES, THE APPLICATIONS SHOW THE SAME WARNING FOR AN allowed change (E.G. SIGNING THE DOCUMENT AGAIN) AND A prohibited change (E.G.

CHANGING CONTENT). WE CALL THIS BEHAVIOR limited vulnerability (G#).

applications for Windows, macOS, and Linux. Even if the
version numbers do not directly indicate this, the applications
PDF Editor 6 Pro, and PDFelement were released in the latest
available version in January 2020 for macOS and Windows.

a) Excluded Applications: We only considered appli-
cations supporting signature validation. By this means, we
excluded popular Linux PDF applications, such as Evince and
Okular6. For the same reason, we excluded Sumatra (Win-
dows) as well as Preview and Skim (MacOS). We excluded
outdated applications that are no longer maintained by the
manufacturer, for example, Adobe Reader 9 for Linux. We
further excluded online signing services, such as DocuSign
and AdobeSign, because they do not provide a visibility
layer. These services output a report that denotes whether
the PDF signature is valid or invalid. However, it does not
provide any information if the shadow content is shown or not.
Since libraries do not provide the functionality to view PDF
documents, we cannot evaluate the attacks’ success. Thus, we
considered libraries out of scope.

C. Results

Overall, 16 out of 29 PDF viewing applications were
vulnerable to at least one presented attack () as shown in Ta-

6Due to the chosen Linux distribution, the installed Okular version did not
support signature validation for the time we provided our evaluation. In the
meantime, this support was added. We found multiple vulnerabilities, which
we immediately reported as part of the responsible disclosure process. This
process is not finished yet.

ble II. For 12 PDF viewers, surprisingly, all three attack classes
were successful. Some applications have limited vulnerabilities
(G#). A limited vulnerability means that the application always
throws a warning, even if a legitimate modification, such as
signing the document a second time (e.g., used for contracts).
As a result, users do not differentiate between legitimate
changes and malicious ones, such as revealing the shadow
content.

a) Differences in Operating Systems: While we could
not find differences for the Adobe products between Windows
and macOS versions, we identified significant differences in
signature validation of Master PDF Editor, PDF Editor 6
Pro, and PDFelement in these operating systems. No tested
attack on the three viewing applications was successful. The
reason for these differences lies in the different validation
messages shown after opening the signed PDF. On macOS, the
three applications throw a warning stating that the signature
is invalid every time an Incremental Update is detected. In
comparison, on Windows, the viewers show that the signature
is valid and, in some cases, warn that changes have been made.

The different versions of the applications justify another
reason for the divergent results in the operating system’s
dependence. For instance, on Windows, the Foxit Reader has
version 9.7, but on macOS, it has version 3.4. This observation
leads to the assumption that both applications can vary in
the way PDFs are processed. This assumption is confirmed in
Table II. Both applications vary widely regarding the signature
validation, which leads to different results concerning the

11

shadow attacks. Interestingly, under macOS, Foxit’s appli-
cations have the unique feature that the signature status only
changes from unknown to valid if macOS’s keychain contains
the private key.

b) Hide: The Hide shadow attack class was successful
for 12 PDF viewing applications. For the exploit, the over-
lay image file was re-declared as /Subtype/XML/Type/Metadata

with /Subtype /Image /Type /XObject when using Incremental
Updates. The Adobe Acrobat applications then faded out the
image file, but at the same time, the applications confirmed a
valid signature for the PDF document in UI-Layers 1 and 2. A
manually initiated signature check returns the error code 109,
but the signature status remains unaffected.

c) Replace: In total, 16 PDF viewing applications were
vulnerable to the Replace shadow attack class. They split into
two different attack variants: replace via overlay and replace
via overwrite. While Adobe viewers correctly classify the font
exchange as an unauthorized Incremental Update, the signature
remains valid when exchanging field text within the form.
We observed the exact opposite case with PDF Editor 6 Pro
and PDFelement. While we could successfully manipulate the
fonts, the signature status changed to invalid when the field
content was exchanged. The Foxit Reader showed another
behavior worth mentioning. After the update from version
9.5.0.20723 to 9.7.0.29455, Incremental Updates allow the
exchange of fonts without invalidating the signature. Since
LibreOffice Draw ignores the fonts contained in the PDF
document, the application is immune to this type of attack.
However, it is possible to exchange the field text without
invalidating the signature.

d) Hide-and-Replace: In 16 PDF viewing applications,
we could identify Hide-and-Replace vulnerabilities. The two
Adobe viewing applications successfully displayed the content
hidden in the document. In contrast, they displayed the signa-
ture as valid in UI-Layers 1 and 2. A manually started signature
check provides a message about an invalid node within the
page structure data, but the signature status remains unaffected.

e) Responsible Disclosure: According to the evaluation
depicted in Table II, we started the responsible disclosure pro-
cess for 26 vulnerable applications – 16 fully vulnerable and 10
with limited vulnerabilities. We cooperated with CERT-Bund
(BSI) for the responsible disclosure and created a dedicated
vulnerability report. The CERT-Bund thankfully contacted all
affected vendors and also related organisations working with
digitally signed PDFs. Some vendors responded quickly and
informed us that fixes were already implemented (Adobe,
Foxit, LibreOffice, Power PDF, Soda PDF). In some cases, the
vendors contacted us for technical queries. In other cases, we
got a message confirmation but no feedback regarding patches
(Master PDF, Nitro, PDF Architect, PDF-XChange, Power
PDF). In four cases, we could not get any feedback, despite
multiple contact attempts within more than seven months
(Expert PDF, PDF Editor Pro, Perfect PDF , PDFelement).

Seven months after our report, we re-evaluated all PDF ap-
plications listed in Table II, using the latest available software
version7. The current status of the fixes can be summarized as
follows.

7Status as of Dec. 7th, 2020

Ë Fixed applications: We verified the vendors’ fixes for 15
PDF applications. For PDF Architect, PDFelement and
Soda PDF, it is necessary to upgrade to the next program
version: PDF Architect 8, PDFelement 8, Soda PDF 12.

o Unfixed applications: The security gaps in six of the
vulnerable PDF applications have not yet been closed
(Master PDF in Windows and Linux, Nitro Pro, PDF-
XChange Editor, Perfect PDF Reader). Five applications
(Expert PDF 14, Nitro Reader, PDF Editor 6 Pro, Perfect
PDF 8 Reader, Perfect PDF 10 Premium) have not been
updated in the meantime. Hence, the reported vulnerabil-
ities are still present in these eleven cases.

To find out how the vendors fixed the vulnerabilities, we
contacted all 15 vendors and asked for details of their fixes.
We used multiple-choice answers (see section A) that we
derived from our PDF-Detector implementation (cf. subsec-
tion VIII-C) to be able to compare the fixes. We received
responses from five vendors. Adobe and PDF Architect re-
sponded: “If there exists an Incremental Update after signing,
we compare the parsed document with and without this Incre-
mental Update”. PDF Architect also reported: “If an Incremen-
tal Update contains a font that overwrites an existing font, we
mark a signed document as invalid”. Foxit described an attack
detection procedure comparable to Adobe’s solution: “For
Replace and Hide-and-Replace, our solution is to analyze the
incremental part after the signature, and check whether there is
any part that can be modified within the scope of permission.
If it is not allowed, the direct return is invalid, if it is allowed,
it will show that there is modification”. LibreOffice always
informs the user about a partially signed document if there
were further Incremental Updates after the signature. Before
our security report, LibreOffice marked signed documents as
invalid only if there were changes in the signed area (“byte
range”). Using the shadow attacks, we could show that the
whole document can be changed with Incremental Updates and
without manipulating the signed area. In a bilateral exchange,
we were able to convince the LibreOffice development team
to mark signed PDF documents as invalid even if the signed
area remains cryptographically untouched and an Incremental
Update modifies the content. Master PDF and Okular wrote
that the vulnerabilities should be closed soon.

Besides the applications, we also found out that two online
signing and validation services recognized the impact of the
attacks and implemented countermeasures [9, 10].

VIII. PDF-DETECTOR

On an abstract level shadow attacks are executed in two
steps. First, the attackers prepare a shadow document, which
hides malicious content. This document is then signed. Second,
the attackers manipulate the signed document to show the
hidden content while keeping the signature status valid.

We developed PDF-Detector, a tool to prevent and de-
tect shadow attacks. PDF-Detector proposes two different
approaches to mitigate and detect shadow documents concern-
ing the countermeasures. In subsection VIII-A, we discuss
a countermeasure detecting shadow documents before they
are signed. Thus, we prevent shadow attacks in the first step
of their execution. This countermeasure is suitable for every
PDF viewer or application capable of signing PDF documents.

12

In subsection VIII-B, we propose an algorithm encounter-
ing shadow documents that have already been signed. This
countermeasure addresses the forensic analysis of signed PDF
documents assuming that previous software did not prevent
the signing of shadow documents. By combining both coun-
termeasures, we can prevent shadow attacks in both phases of
their execution.

We implemented both, prevention and detection, and tested
our code against all exploit files. See subsection VIII-C for our
results.

A. Prevention

In this section, we introduce an algorithm capable of
detecting hidden content. Thus, users can be warned before
signing.
To find hidden (inactive) shadow content, it is necessary
to reliably extract text, images, and forms from the PDF
document for analysis. The attacks of the Hide category
use overlays of different objects, for example, hiding a text
under an image. To detect these overlays, PDF-Detector must
extract the objects’ rectangular coordinates within the PDF
document. It can then use these coordinates (left, bottom,
right, top) to determine an object’s exact position within a
page. An image that overlays a text box can be identified by
calculating a collision of both objects using the coordinates
[11]. When creating a PDF document, a slight overlapping
of images and text boxes is not unusual. For this reason,
the collision calculation should calculate the value of the
overlay in percent. The lower the value, the less content is
covered by the object. For the Replace category, a prevention
phase cannot be sensibly implemented. The first step “injecting
shadow content” is indistinguishable from a benign injection.
For example, inserting multiple fonts when creating a PDF
document is not an unusual malicious behavior. For the Hide-
and-Replace category, this does not apply at all. Here, the
first step can be detected, because the shadow document path
is contained in the document. A promising way to recognize
this is to exchange the references to the Kids objects for all
Pages objects. Subsequently, all correctly referenced objects
of the newly created PDF document are compared with the
source document. In an unmanipulated PDF document, only
the positions of the contained pages are swapped. Suppose the
PDF document contains shadow content of the category Hide-
and-Replace. In that case, the attackers make it visible in the
second step by referencing it. Thus, it can be identified.

B. Detection

While active (hidden) shadow content should be discovered
during the prevention phase, active (visible) shadow content is
in the focus of the detection phase. In practice, this means at-
tackers created a shadow document, which the signers signed.
Afterwards, the attackers made the shadow content visible.
For detecting Hide, Hide-and-Replace and the overlay variant
of Replace attack classes, PDF-Detector can compare the
current document with the document before it was signed. This
comparison can be technically implemented by removing all
data, that is, all Incremental Updates, after the first signature.
The discrepancy between the two documents becomes apparent
in the second step of the Hide attacks, by the absence of
an object in the signed document, for example, a missing

image object. In contrast, in the second step in Hide-and-
Replace, attackers deliver a different overall content compared
to the unsigned document. The detection of a Replace attack
in the Font variant is less complex. For this purpose, it is
sufficient to scan updates after signing for added FontFile

objects and to comparing their object number with already
contained FontFiles.

C. Implementation Details

PDF-Detector uses combination of the Python libraries
PDFMiner and pdfrw. In practice, PDF documents are often
compressed, which further complicates the analysis of the
content, since pdfrw cannot handle the Deflate compression
algorithm used in PDF [12, 13]. For this reason the PDF-
Detector decompresses the whole PDF document using pypdftk
and pdftk if necessary.

The command-line tool accepts a PDF document as input.
First, it checks if the document already contains a signature
to select the correct mode. If no signature is found, the
prevention mode starts and analyzes the document as described
in subsection VIII-A. If the document has already been signed,
the detection mode starts and checks the document for any
visible shadow content as described in subsection VIII-B. If
no visible shadow content is found, the analysis is additionally
started in prevention mode to search for hidden (inactive)
shadow content.

For assuring that all exploits are correctly detected, we used
the PDF files generated by our PDF-Attacker implementation.
This processing ensures that both phases, prevention and
detection, can be tested. We were able to verify and fine-tune
the correct analysis based on these 26 PDF documents, in-
cluding 4 unsigned documents, 7 inactive shadow documents,
7 signed but inactive shadow documents, and 8 active shadow
document. We plan to train the tool with additional documents
to strengthen the detection rate and minimize the false positive
rate.

IX. SHADOW ATTACK: BEYOND SIGNATURE BYPASSES

The concept of the shadow attack is not limited to the
attacks on PDF signatures. Analyzing the PDF specification
and Adobe products, we observed exciting features and con-
figuration possibilities.

a) High Privileged Actions in PDF: The PDF specifi-
cation basically defines two kinds of Code Execution (CE):
PDF actions and JavaScript. Actions are limited in their
functionality. A popular example of actions is URL invocation.
In contrast, JavaScript provides a huge function set, including
control structures (e.g., if, while). For security reasons, both
types of CE are restricted in PDF. For example, URL invoca-
tions require user confirmation, and access to other documents
and files is blocked.

During our research, we determined that both CE variants
can run in privileged mode. This mode allows the execution of
security-critical actions without any restriction or user consent.
For example, privileged JavaScript can change the UI and
functionality of the viewer application’s menu items. It can
read the content of other opened PDF tabs or even files
stored on the machine. It can also invoke URLs without any
confirmation.

13

Typically, a PDF is not allowed to execute privileged
JavaScript or actions without user confirmation or configura-
tion changes in the PDF viewer.

One exception exists by using digitally signed PDFs, more
concrete certified PDFs. Adobe Products users can configure
PDFs signed with a specific certificate to be given permission
to execute high privileged operations. This setting is disabled
by default for most preconfigured CAs and all manually
trusted certificates. To our surprise, we found an exception in
Adobe Products: if the private key for a certificate is known,
PDF documents signed with this particular certificate are
automatically allowed to execute high privileged code.

b) Attack Idea: Inspired by the shadow attacks concept,
we raised the question whether attackers could hide shadow
actions or shadow JavaScript in the PDF so that it is executed
after its signing.

For this purpose, we create a new attack based on the
following simplified attacker model. We assume that the
signers and the victims are the same entities. Additionally,
the attackers do not need to manipulate the PDF document
after its signing. When taking note of Figure 3, the only step
executed by the attackers is to create PDF1 and to embed
the high privileged code inside. Once the PDF1 is signed, the
high privileged code is executed automatically on the signers’
machine.

c) Attack Description: The attack works as follows:

1) The attackers generate a PDF containing malicious, high
privileged code, for example, read access to other PDF
tabs using privileged JavaScript. The code is stored on
a specific execution event that will be triggered after
signing the document, for example, during the willClose
event, or any other event which is triggered after the
signing (e.g., willSave, didSave).

2) The PDF is sent to the signers. They sign the document.
3) After the signing, the victims save and close the PDF.
4) The closing of the document triggers the willClose event

and the malicious code inside the PDF is executed.
5) Typically, the privileged JavaScript is not executed be-

cause the special permission for this is not granted.
However, the application sees that the private key for the
certificate used to sign the PDF is known. This mistakenly
convinces the application to execute privileged JavaScript
– the application assumes that the signer intended to
execute the script, because they signed it.

This attack is limited to Adobe products since they define
a special policy regarding the CE and handle signed PDFs
differently than unsigned.

d) Responsible Disclosure: When we initially reported
this issue to Adobe, their security team rejected to classify our
findings as a vulnerability. They assumed that all collaborators
who are working on the document trust each other. After a
short discussion, we convinced them that this is not always the
case. As a direct result of our finding, Adobe has implemented
security controls in their May 2020 release, which “prevent[s]
signing until warnings are reviewed”.

X. RELATED WORK

a) PDF Signatures: Attacks on electronic signatures
which abuse the missing cryptographic protection were de-
scribed in 2008 and 2012 by Grigg [15, 14]. In 2010, Raynal
et al. [16] considered potential security issues regarding the
signature verification by criticizing the design of the certificate
trust establishment. The first attack that bypassed the cryp-
tography in PDFs was introduced in 2017 by Stevens et al.
[17]. The researchers attacked the collision resistance of SHA-
1 and created two different PDF files containing the same
digest value but different content. In 2019, Mladenov et al. [6]
published a comprehensive study regarding the security of PDF
signatures and they discovered three novel attacks and revealed
all current applications to be vulnerable. More details regarding
their relation to our work is discussed in subsection V-E.

b) Content Masking Attacks: A polymorphic attack
containing two different files, a PDF and TIFF, have been in-
troduced in 2009 by Buccafurri et al. [18] and re-implemented
later by Popescu [19]. Depending on the viewer used, different
content is shown. This risk exists if the victims sign the
document and are unaware of the hidden content. A similar ap-
proach was introduced in 2014 by Albertini [20]. He combined
a PDF and a JPEG into a single polyglot file. In 2015, Lax et al.
[21] systematized potential security topics related to digitally
signed documents including the signature generation process,
signed documents containing dynamic content like macros or
JavaScript, and polymorphic documents similar to Popescu
[19]. All of the attacks rely either on different viewers’
usage to open the malicious PDF or loading dynamic content
from attackers’ controlled source. None of these requirements
are needed for the attacks presented in this paper. In 2017,
Markwood et al. [7] introduced a novel attack related to content
masking by using font encoding. As a result, the researchers
could trick automated content analyzing software to process
different data than the data displayed.

c) PDF Malware: Since 2010, Raynal et al. [16] abuse
legitimate features in PDFs to carry out attacks such as Denial-
of-Service (DoS), Server-Side-Request-Forgery (SSRF), and
information leakage. In 2013 and 2014, multiple vulnerabilities
in Adobe Reader were reported to be abusing legitimate PDF
features, JavaScript, and XML [22, 23]. In 2015, Inführ [24]
systematized the current risks related to features in PDFs,
which lead to security issues. Valentin [25] published a study
revealing weaknesses related to malicious URI invocation. In
2018, these attack vectors were extended by Franken et al. [26]
who revealed weaknesses in two PDF readers by forcing them
to call arbitrary URIs. In the same year, multiple vulnerabil-
ities in Adobe Reader and different Microsoft products were
discovered, leading to URI invocation and NTLM credentials
leakage [27, 28].

Motivated by the discovered attacks since 2010, different
security tools were implemented to detect maliciously crafted
documents [29, 30, 31, 32]. Such tools relied on the detection
of known attack patterns and structural analysis of PDFs. The
list of tools was extended by new malware classifiers based on
machine learning [33, 34, 35, 36, 37, 38, 39, 40]. Motivated
by previously discovered problems regarding the detection of
malicious PDF files [41, 42], Chen et al. [43] published in 2020
a methodology for robust classification of PDF Malware. The

14

authors achieved 92.27% accuracy and a 0.56% false positive
rate.

XI. FUTURE WORK

In this section, we discuss several problems that should be
addressed by future research.

a) Secure and Insecure Document Updates: One of
the main features we abused is Incremental Update. Using
Incremental Update, previously hidden content could be dis-
played without raising security warnings. The main problem
is the flexibility of the current specification allowing multiple
Incremental Updates without invalidating the signature. How-
ever, the developers of the applications are left to themselves
to address the problem. They differ between dangerous and
harmless Incremental Updates on their own. As a result,
inconsistencies regarding the signature validation status and
the displayed content exist, depending on which PDF viewer
is used. Future research should systematically discover all
allowed and forbidden changes to address these inconsisten-
cies, analyze their impact regarding security, and propose a
countermeasure if needed. Our attacks only considered one-
time signed documents. The attacker model could be adjusted
to simulate use cases in which multiple signer entities are
involved. In such cases, the attackers can insert content before
the next signature is applied. It is currently unclear what kind
of changes they can apply and which kind of content could be
shadowed.

Establishing a systematic evaluation approach is not a
trivial task. For instance, the /Catalog object can contain up
to 28 attributes. One of these attributes is the reference to
the /Pages object, which can also have up to 30 attributes,
and it can refer to further objects. Due to the large amount
of test cases, a tool for (semi-)automatically generating PDF
test cases should be implemented. One possible approach to
achieve this is to implement a tool producing a series of test
cases that contains many varieties of manipulations, following
a fuzzing alike approach. The main challenge here is to create a
meaningful Incremental Update without invalidating the digital
signature by applying trivial manipulations.

b) Updates and Parsing Errors: While our research
concentrated on PDF standard compliant documents, previous
research focused on Incremental Updates that are not standard
compliant [6]. A combination of both techniques could reveal
new insights. For example, during the responsible disclosure
period, we could bypass the implemented countermeasures
several times by just removing (or commenting out) code
fragments within the PDF document. We encourage the de-
velopment of fuzzing techniques capable of covering a large
number of document variants.

A recently published research article by Kuchta et al. [44]
revealed new insights into this problem. The authors analyzed
230 000 real-word PDF documents provided by Garfinkel et al.
[45] and discovered that 13.5% of the PDFs were improperly
rendered. The authors concentrated only on inconsistencies
during rendering without evaluating the security implications.
The second study could be provided by extending the scope
to security and considering more real-world examples than
mentioned by Garfinkel et al. [45].

XII. CONCLUSION

PDF signatures are designed to protect the integrity and
authenticity of PDFs. In contrast to the classical digital sig-
nature use cases that apply a signature only once on a target,
PDF signatures address more complex use cases. A signed
document is allowed to be updated without invalidating its
signature, but only in particular cases. Additionally, a PDF
can be signed several times in succession. In this paper, we
showed how this flexibility could be abused to replace the
entire content of the PDF without invalidating the signature.
As a result, we found 16 of 29 applications to be vulnerable.

The reasons for this state can be found in the current PDF
specification: (1) It describes imprecisely how the signature
validation may be implemented. (2) It does not document
edge cases and does not propose a solution or a guideline.
As a result, developers must solve these problems on their
own. (3) The PDF specification should reconsider the feature-
richness which weakens the security. Instead, it should apply
stricter and more limited handling regarding cryptographic
protection. As a reaction to our research, we became a member
of the ISO/TC 171/SC 2 technical committee to contribute to
future PDF standards.

ACKNOWLEDGMENT

The authors would like to thank Sebastian Lauer, Paul
Rösler, Marcus Niemietz, and Jörg Schwenk for their valuable
discussions, feedback, and support. Simon Rohlmann was
supported by the German Federal Ministry of Economics and
Technology (BMWi) project “Industrie 4.0 Recht-Testbed”
(13I40V002C). Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

REFERENCES

[1] United States Government Printing Office, “Electronic
signatures in global and national commerce act,” 2000.
[Online]. Available: https://www.govinfo.gov/content/
pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf

[2] E. Union, “Regulation (eu) no 910/2014 of the european
parliament and of the council on electronic identification
and trust services for electronic transactions in the
internal market and repealing directive 1999/93/ec,”
2014. [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32014R0910

[3] Wikipedia. (2019) Electronic signatures and law. [On-
line]. Available: https://en.wikipedia.org/wiki/Electronic
signatures and law

[4] Adobe. (2018, Nov.) Adobe fast facts. [On-
line]. Available: https://www.adobe.com/about-adobe/
fast-facts.html

[5] DocuSign. (2019) Docusign 2019 annual report.
[Online]. Available: https://s22.q4cdn.com/408980645/
files/doc financials/2019/Annual/DocuSign-FY2019-
Annual-Report.pdf

[6] V. Mladenov, C. Mainka, K. Meyer zu Selhausen,
M. Grothe, and J. Schwenk, “1 trillion dollar refund –
how to spoof pdf signatures,” in ACM Conference on
Computer and Communications Security, Nov. 2019.

15

https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0910
https://en.wikipedia.org/wiki/Electronic_signatures_and_law
https://en.wikipedia.org/wiki/Electronic_signatures_and_law
https://www.adobe.com/about-adobe/fast-facts.html
https://www.adobe.com/about-adobe/fast-facts.html
https://s22.q4cdn.com/408980645/files/doc_financials/2019/Annual/DocuSign-FY2019-Annual-Report.pdf
https://s22.q4cdn.com/408980645/files/doc_financials/2019/Annual/DocuSign-FY2019-Annual-Report.pdf
https://s22.q4cdn.com/408980645/files/doc_financials/2019/Annual/DocuSign-FY2019-Annual-Report.pdf

[7] I. Markwood, D. Shen, Y. Liu, and Z. Lu, “PDF Mirage:
Content Masking Attack Against Information-Based On-
line Services,” in 26th USENIX Security Symposium
(USENIX Security 17), (Vancouver, BC), 2017, pp. 833–
847.

[8] pdf-insecurity.org. (2020, apr) Exploits. [Online].
Available: https://www.pdf-insecurity.org/signature/
evaluation 2018.html#desktop-viewer-applications

[9] Intarsys. (2020) Releasenotes: Signlive 7.1.6.
[Online]. Available: https://www.intarsys.de/sites/default/
files/Dokumente/ReleaseNotes SignLive 7.1.6.txt

[10] I. PDF. (2020, September) Investigating pdf shadow
attacks: What are shadow attacks? [Online].
Available: https://itextpdf.com/en/blog/technical-notes/
investigating-pdf-shadow-attacks-what-are-shadow-
attacks-part-1

[11] M. contributors. (2019, Nov.) 2d collision detection.
[Online]. Available: https://developer.mozilla.org/en-US/
docs/Games/Techniques/2D collision detection

[12] A. S. Incorporated, PDF Reference, version 1.7, 6th ed.,
November 2006.

[13] P. Maupin. (2017, Sep.) pdfrw 0.4: Project description.
[Online]. Available: https://pypi.org/project/pdfrw/#all-
examples

[14] I. Grigg. (2008) Technologists on signatures: looking
in the wrong place. [Online]. Available: http:
//financialcryptography.com/mt/archives/001056.html

[15] ——. (2012) Signatures on fax & email - if you did
not intend to be bound, why did you bother to write it?
[Online]. Available: http://financialcryptography.com/mt/
archives/001364.html

[16] F. Raynal, G. Delugré, and D. Aumaitre, “Malicious
Origami in PDF,” Journal in Computer Virology,
vol. 6, no. 4, pp. 289–315, 2010. [Online].
Available: http://esec-lab.sogeti.com/static/publications/
08-pacsec-maliciouspdf.pdf

[17] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and
Y. Markov, “The first collision for full sha-1,” in Annual
International Cryptology Conference. Springer, 2017,
pp. 570–596.

[18] F. Buccafurri, G. Caminiti, and G. Lax, “Fortifying
the dalı̀ attack on digital signature,” in Proceedings
of the 2nd International Conference on Security of
Information and Networks, ser. SIN ’09. New York,
NY, USA: Association for Computing Machinery, 2009,
p. 278–287. [Online]. Available: https://doi.org/10.1145/
1626195.1626262

[19] D. Popescu, “Hiding malicious content in PDF
documents,” CoRR, vol. abs/1201.0397, 2012. [Online].
Available: http://arxiv.org/abs/1201.0397

[20] A. Albertini, “This PDF is a JPEG; or, This Proof of
Concept is a Picture of Cats,” PoC 11 GTFO 0x03,
2014. [Online]. Available: https://www.alchemistowl.org/
pocorgtfo/pocorgtfo03.pdf

[21] G. Lax, F. Buccafurri, and G. Caminiti, “Digital docu-
ment signing: Vulnerabilities and solutions,” Information
Security Journal: A Global Perspective, vol. 24, no. 1-3,
pp. 1–14, 2015.

[22] B. Rios, F. Lanusse, and M. Gentile. (2013)
Adobe reader same-origin policy bypass. [Online].
Available: http://www.sneaked.net/adobe-reader-same-
origin-policy-bypass

[23] A. Inführ. (2014, Dec.) Multiple pdf vulnerabilities
– text and pictures on steroids. [Online]. Avail-
able: https://insert-script.blogspot.de/2014/12/multiple-
pdf-vulnerabilites-text-and.html

[24] ——. (2015, Sep.) Pdf – mess with the web.
[Online]. Available: https://2015.appsec.eu/wp-content/
uploads/2015/09/owasp-appseceu2015-infuhr.pdf

[25] H. Valentin, “Malicious URI resolving in PDF Docu-
ments,” Blackhat Abu Dhabi, 2012.

[26] G. Franken, T. V. Goethem, and W. Joosen, “Who
left open the cookie jar? a comprehensive evaluation
of third-party cookie policies,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, pp. 151–168.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/franken

[27] A. Inführ. (2018, May) Adobe reader
pdf - client side request injection. [On-
line]. Available: https://insert-script.blogspot.de/2018/05/
adobe-reader-pdf-client-side-request.html

[28] C. P. Research. (2018, April) Ntlm cre-
dentials theft via pdf files. [Online]. Avail-
able: https://research.checkpoint.com/ntlm-credentials-
theft-via-pdf-files/

[29] P. Laskov and N. Šrndić, “Static detection of malicious
javascript-bearing pdf documents,” in Proceedings of the
27th annual computer security applications conference.
ACM, 2011, pp. 373–382.

[30] D. Maiorca, G. Giacinto, and I. Corona, “A pattern
recognition system for malicious pdf files detection,” in
International Workshop on Machine Learning and Data
Mining in Pattern Recognition. Springer, 2012, pp. 510–
524.

[31] C. Smutz and A. Stavrou, “Malicious pdf detection using
metadata and structural features,” in Proceedings of the
28th annual computer security applications conference.
ACM, 2012, pp. 239–248.

[32] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0r:
Detection of malicious pdf-embedded javascript code
through discriminant analysis of api references,” in Pro-
ceedings of the 2014 Workshop on Artificial Intelligent
and Security Workshop. ACM, 2014, pp. 47–57.

[33] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto, “A
structural and content-based approach for a precise and
robust detection of malicious pdf files,” in 2015 Interna-
tional Conference on Information Systems Security and
Privacy (ICISSP). IEEE, 2015, pp. 27–36.

[34] N. Šrndić and P. Laskov, “Hidost: a static machine-
learning-based detector of malicious files,” EURASIP
Journal on Information Security, vol. 2016, no. 1, p. 22,
2016.

[35] L. Tong, B. Li, C. Hajaj, C. Xiao, and Y. Vorobeychik,
“A framework for validating models of evasion attacks
on machine learning, with application to pdf malware
detection,” arXiv preprint arXiv:1708.08327, 2017.
[Online]. Available: https://arxiv.org/pdf/1708.08327.pdf

[36] D. Maiorca and B. Biggio, “Digital investigation of
pdf files: Unveiling traces of embedded malware,” IEEE
Security and Privacy: Special Issue on Digital Forensics,
In Press. [Online]. Available: https://pralab.diee.unica.it/
sites/default/files/maiorca17-sp.pdf

16

https://www.pdf-insecurity.org/signature/evaluation_2018.html#desktop-viewer-applications
https://www.pdf-insecurity.org/signature/evaluation_2018.html#desktop-viewer-applications
https://www.intarsys.de/sites/default/files/Dokumente/ReleaseNotes_SignLive_7.1.6.txt
https://www.intarsys.de/sites/default/files/Dokumente/ReleaseNotes_SignLive_7.1.6.txt
https://itextpdf.com/en/blog/technical-notes/investigating-pdf-shadow-attacks-what-are-shadow-attacks-part-1
https://itextpdf.com/en/blog/technical-notes/investigating-pdf-shadow-attacks-what-are-shadow-attacks-part-1
https://itextpdf.com/en/blog/technical-notes/investigating-pdf-shadow-attacks-what-are-shadow-attacks-part-1
https://developer.mozilla.org/en-US/docs/Games/Techniques/2D_collision_detection
https://developer.mozilla.org/en-US/docs/Games/Techniques/2D_collision_detection
https://pypi.org/project/pdfrw/#all-examples
https://pypi.org/project/pdfrw/#all-examples
http://financialcryptography.com/mt/archives/001056.html
http://financialcryptography.com/mt/archives/001056.html
http://financialcryptography.com/mt/archives/001364.html
http://financialcryptography.com/mt/archives/001364.html
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
https://doi.org/10.1145/1626195.1626262
https://doi.org/10.1145/1626195.1626262
http://arxiv.org/abs/1201.0397
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
http://www.sneaked.net/adobe-reader-same-origin-policy-bypass
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html
https://insert-script.blogspot.de/2014/12/multiple-pdf-vulnerabilites-text-and.html
https://2015.appsec.eu/wp-content/uploads/2015/09/owasp-appseceu2015-infuhr.pdf
https://2015.appsec.eu/wp-content/uploads/2015/09/owasp-appseceu2015-infuhr.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
https://insert-script.blogspot.de/2018/05/adobe-reader-pdf-client-side-request.html
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://research.checkpoint.com/ntlm-credentials-theft-via-pdf-files/
https://arxiv.org/pdf/1708.08327.pdf
https://pralab.diee.unica.it/sites/default/files/maiorca17-sp.pdf
https://pralab.diee.unica.it/sites/default/files/maiorca17-sp.pdf

[37] S. Dey, A. Kumar, M. Sawarkar, P. K. Singh, and
S. Nandi, “EvadePDF: Towards evading machine learning
based PDF malware classifiers,” in Communications in
Computer and Information Science, vol. 939, 2019, pp.
140–150.

[38] Y. Li, Y. Wang, Y. Wang, L. Ke, and Y. an Tan, “A
feature-vector generative adversarial network for evading
PDF malware classifiers,” Information Sciences, vol. 523,
pp. 38–48, 2020.

[39] A. Corum, D. Jenkins, and J. Zheng, “Robust PDF Mal-
ware Detection with Image Visualization and Processing
Techniques,” in Proceedings - 2019 2nd International
Conference on Data Intelligence and Security, ICDIS
2019, 2019, pp. 108–114.

[40] “On training robust PDF malware classifiers,” in
29th USENIX Security Symposium (USENIX Security
20). Boston, MA: USENIX Association, Aug. 2020.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/chen-yizheng

[41] W. Xu, Y. Qi, and D. Evans, “Automatically evading
classifiers,” in Proceedings of the 2016 network and
distributed systems symposium, vol. 10, 2016.

[42] N. Srndic and P. Laskov, “Practical evasion of a learning-
based classifier: A case study,” in 2014 IEEE Symposium
on Security and Privacy, May 2014, pp. 197–211.

[43] Y. Chen, S. Wang, D. She, and S. Jana, “On
training robust PDF malware classifiers,” in 29th
USENIX Security Symposium (USENIX Security 20).
Boston, MA: USENIX Association, Aug. 2020.
[Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/chen-yizheng

[44] T. Kuchta, T. Lutellier, E. Wong, L. Tan, and C. Cadar,
“On the correctness of electronic documents: studying,
finding, and localizing inconsistency bugs in PDF readers
and files,” EMPIRICAL SOFTWARE ENGINEERING,
vol. 23, no. 6, pp. 3187–3220, DEC 2018.

[45] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt,
“Bringing science to digital forensics with standardized
forensic corpora,” digital investigation, vol. 6, pp. S2–
S11, 2009.

APPENDIX

EMAIL SENT TO VENDORS

We contacted all vendors via email to gather information on
how they fixed the shadow attacks. To get comparable results,
we requested the information in a multiple-choice fashion.

Dear Sir or Madam,
we are security researchers at Ruhr University
Bochum. Together with the CERT-Bund (refer-
ence: [CERT-Bund#2020030228000759] / CVE-
2020-9592 / CVE-2020-9596), we informed you in
March of this year about security vulnerabilities
(called ”Shadow Attacks”) in your PDF application.
For our research, we are very interested in how the
vulnerabilities mentioned above were fixed. In order
not to take up too much of your time, we have created
some keywords and would like to ask you to tick the
appropriate lines. Of course we are also grateful for
any further comments in this context.
Attack variant “Hide-and-Replace”:

� We have not fixed the vulnerability yet.
� We always mark a signed document as invalid, if

there exist any Incremental Updates after signing.
� If there exist an Incremental Update after sign-

ing, we compare the parsed document with and
without this Incremental Update.

� We check the document for hidden object paths
before signing.

� If there are two or more complete object paths
(Pages → Page → Content), we always mark a
signed document as invalid.

� Other methods:
Further comments:
Attack variant “Hide”:
� We have not fixed the vulnerability yet.
� We always mark a signed document as invalid, if

there exist any Incremental Updates after signing.
� If there exist an Incremental Update after sign-

ing, we compare the parsed document with and
without this Incremental Update.

� If an Incremental Update overlays a form or con-
tent stream object, we mark a signed document
as invalid.

� Other methods:
Further comments:
Attack variant “Replace”:
� We have not fixed the vulnerability yet.
� We always mark a signed document as invalid, if

there exist any Incremental Updates after signing.
� If there exist an Incremental Update after sign-

ing, we compare the parsed document with and
without this Incremental Update.

� If an Incremental Update contains a font that
overwrites an existing font, we mark a signed
document as invalid.

� If an Incremental Update delete or overwrite an
existing image or form object, we mark a signed
document as invalid

� Other methods:
Further comments:

17

https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yizheng

	Introduction
	Basics
	Attacker Model
	Shadow Attacks: Overview and Preliminaries
	Shadow Documents in the Real World
	Analysis of Document Modifications
	Summary

	Shadow Attacks: Hide, Replace, and Hide-and-Replace
	Shadow Attack: Hide
	Variant 1: Hide Content via Referenced Object
	Variant 2: Hide Content via Object's Order

	Shadow Attack: Replace
	Variant 1: Replace via Overlay
	Variant 2: Replace via Overwrite

	Shadow Attack: Hide-and-Replace
	Variant 1: Change Object References
	Variant 2: Change Objects Usage

	Stealthiness of Shadow Attacks
	Shadow Attack vs. Incremental Saving Attack

	PDF-Attacker
	Evaluation
	Test Environment
	Applications
	Results

	PDF-Detector
	Prevention
	Detection
	Implementation Details

	Shadow Attack: Beyond Signature Bypasses
	Related Work
	Future Work
	Conclusion
	Appendix

